Modelling Group Heterogeneity for Small Area Estimation Using M-Quantiles

被引:3
|
作者
Dawber, James [1 ]
Chambers, Raymond [2 ]
机构
[1] Univ Southampton, Social Stat & Demog, Southampton Stat Sci Res Inst, Southampton SO17 1BJ, Hants, England
[2] Univ Wollongong, Natl Inst Appl Stat Res Australia, Wollongong, NSW 2522, Australia
关键词
small area estimation; random effects model; M-quantile regression;
D O I
10.1111/insr.12284
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Small area estimation typically requires model-based methods that depend on isolating the contribution to overall population heterogeneity associated with group (i.e. small area) membership. One way of doing this is via random effects models with latent group effects. Alternatively, one can use an M-quantile ensemble model that assigns indices to sampled individuals characterising their contribution to overall sample heterogeneity. These indices are then aggregated to form group effects. The aim of this article is to contrast these two approaches to characterising group effects and to illustrate them in the context of small area estimation. In doing so, we consider a range of different data types, including continuous data, count data and binary response data.
引用
收藏
页码:S50 / S63
页数:14
相关论文
共 50 条
  • [41] Hierarchical Bayesian models for small area estimation of forest variables using LiDAR
    Planck, Neil R. Ver
    Finley, Andrew O.
    Kershaw, John A., Jr.
    Weiskittel, Aaron R.
    Kress, Megan C.
    REMOTE SENSING OF ENVIRONMENT, 2018, 204 : 287 - 295
  • [42] Small area estimation and childhood obesity surveillance using electronic health records
    Zhao, Ying-Qi
    Norton, Derek
    Hanrahan, Larry
    PLOS ONE, 2021, 16 (02):
  • [43] SMALL AREA ESTIMATION USING SURVEY WEIGHTS WITH FUNCTIONAL MEASUREMENT ERROR IN THE COVARIATE
    Torabi, Mahmoud
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2011, 53 (02) : 141 - 155
  • [44] Small area estimation using design based direct and synthetic logarithmic estimators
    Kumar, Anoop
    Bhushan, Shashi
    Pokhrel, Rohini
    Emam, Walid
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (08)
  • [45] A Small Area Estimation for Monthly Wage Using Mean Squared Percentage Error
    Hwang, Hee-Jin
    Shin, Key-Il
    KOREAN JOURNAL OF APPLIED STATISTICS, 2009, 22 (02) : 403 - 414
  • [46] SMALL AREA ESTIMATION USING A SPATIO-TEMPORAL LINEAR MIXED MODEL
    Pereira, Luis N.
    Coelho, Pedro S.
    REVSTAT-STATISTICAL JOURNAL, 2012, 10 (03) : 285 - 308
  • [47] Spatial Distribution of Multidimensional Educational Poverty in Italy using Small Area Estimation
    Pratesi, Monica
    Quattrociocchi, Luciana
    Bertarelli, Gaia
    Gemignani, Alessandro
    Giusti, Caterina
    SOCIAL INDICATORS RESEARCH, 2021, 156 (2-3) : 563 - 586
  • [48] Small area estimation of crop yield using remote sensing satellite data
    Singh, R
    Semwal, DP
    Rai, A
    Chhikara, RS
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (01) : 49 - 56
  • [49] Spatial Distribution of Multidimensional Educational Poverty in Italy using Small Area Estimation
    Monica Pratesi
    Luciana Quattrociocchi
    Gaia Bertarelli
    Alessandro Gemignani
    Caterina Giusti
    Social Indicators Research, 2021, 156 : 563 - 586
  • [50] Poverty analysis using small area estimation: an application to conservation agriculture in Uganda
    Farris, Jarrad
    Larochelle, Catherine
    Alwang, Jeffrey
    Norton, George W.
    King, Caleb
    AGRICULTURAL ECONOMICS, 2017, 48 (06) : 671 - 681