Modelling Group Heterogeneity for Small Area Estimation Using M-Quantiles

被引:3
|
作者
Dawber, James [1 ]
Chambers, Raymond [2 ]
机构
[1] Univ Southampton, Social Stat & Demog, Southampton Stat Sci Res Inst, Southampton SO17 1BJ, Hants, England
[2] Univ Wollongong, Natl Inst Appl Stat Res Australia, Wollongong, NSW 2522, Australia
关键词
small area estimation; random effects model; M-quantile regression;
D O I
10.1111/insr.12284
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Small area estimation typically requires model-based methods that depend on isolating the contribution to overall population heterogeneity associated with group (i.e. small area) membership. One way of doing this is via random effects models with latent group effects. Alternatively, one can use an M-quantile ensemble model that assigns indices to sampled individuals characterising their contribution to overall sample heterogeneity. These indices are then aggregated to form group effects. The aim of this article is to contrast these two approaches to characterising group effects and to illustrate them in the context of small area estimation. In doing so, we consider a range of different data types, including continuous data, count data and binary response data.
引用
收藏
页码:S50 / S63
页数:14
相关论文
共 50 条
  • [21] Shrinkage Small Area Estimation Using a Semiparametric Mixed Model
    Jeong, Seok-Oh
    Choo, Manho
    Shin, Key-Il
    KOREAN JOURNAL OF APPLIED STATISTICS, 2014, 27 (04) : 605 - 617
  • [22] Small area estimation of inequality measures using mixtures of Beta
    De Nicolo, Silvia
    Ferrante, Maria Rosaria
    Pacei, Silvia
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2024, 187 (01) : 83 - 107
  • [23] Small area estimation using unmatched sampling and linking models
    You, Y
    Rao, JNK
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2002, 30 (01): : 3 - 15
  • [24] Small area estimation via M-quantile geographically weighted regression
    N. Salvati
    N. Tzavidis
    M. Pratesi
    R. Chambers
    TEST, 2012, 21 : 1 - 28
  • [25] Small area estimation via M-quantile geographically weighted regression
    Salvati, N.
    Tzavidis, N.
    Pratesi, M.
    Chambers, R.
    TEST, 2012, 21 (01) : 1 - 28
  • [26] Estimation of the area of field emission of a carbon nanotube using modelling in COMSOL Multiphysics
    Chumak, M. A.
    Filippov, S. V.
    Kolosko, A. G.
    Popov, E. O.
    INTERNATIONAL CONFERENCE PHYSICA.SPB/2017, 2018, 1038
  • [27] Modeling Malaria Incidence in Bengkulu Province Using Small Area Estimation
    Sunandi, Etis
    8TH ANNUAL BASIC SCIENCE INTERNATIONAL CONFERENCE: COVERAGE OF BASIC SCIENCES TOWARD THE WORLD'S SUSTAINABILITY CHALLANGES, 2018, 2021
  • [28] Small Area Estimation Using Estimated Population Level Auxiliary Data
    Chandra, Hukum
    Sud, U. C.
    Gharde, Yogita
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (05) : 1197 - 1209
  • [29] Estimating Asthma Prevalence Across Wisconsin Using Small Area Estimation
    Guilbert, T. W.
    Buckingham, W. R.
    Hanrahan, L. P.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2013, 187
  • [30] On Accuracy Estimation Using Parametric Bootstrap in small Area Prediction Problems
    Zadlo, Tomasz
    JOURNAL OF OFFICIAL STATISTICS, 2020, 36 (02) : 435 - 458