Modelling Group Heterogeneity for Small Area Estimation Using M-Quantiles
被引:3
|
作者:
Dawber, James
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southampton, Social Stat & Demog, Southampton Stat Sci Res Inst, Southampton SO17 1BJ, Hants, EnglandUniv Southampton, Social Stat & Demog, Southampton Stat Sci Res Inst, Southampton SO17 1BJ, Hants, England
Dawber, James
[1
]
Chambers, Raymond
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wollongong, Natl Inst Appl Stat Res Australia, Wollongong, NSW 2522, AustraliaUniv Southampton, Social Stat & Demog, Southampton Stat Sci Res Inst, Southampton SO17 1BJ, Hants, England
Chambers, Raymond
[2
]
机构:
[1] Univ Southampton, Social Stat & Demog, Southampton Stat Sci Res Inst, Southampton SO17 1BJ, Hants, England
[2] Univ Wollongong, Natl Inst Appl Stat Res Australia, Wollongong, NSW 2522, Australia
small area estimation;
random effects model;
M-quantile regression;
D O I:
10.1111/insr.12284
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Small area estimation typically requires model-based methods that depend on isolating the contribution to overall population heterogeneity associated with group (i.e. small area) membership. One way of doing this is via random effects models with latent group effects. Alternatively, one can use an M-quantile ensemble model that assigns indices to sampled individuals characterising their contribution to overall sample heterogeneity. These indices are then aggregated to form group effects. The aim of this article is to contrast these two approaches to characterising group effects and to illustrate them in the context of small area estimation. In doing so, we consider a range of different data types, including continuous data, count data and binary response data.
机构:
Univ Manchester, Social Stat & Ctr Census & Survey Res, Manchester M13 9PL, Lancs, EnglandUniv Manchester, Social Stat & Ctr Census & Survey Res, Manchester M13 9PL, Lancs, England
Tzavidis, Nikos
Marchetti, Stefano
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pisa, Dept Stat & Math Appl Econ, I-56124 Pisa, ItalyUniv Manchester, Social Stat & Ctr Census & Survey Res, Manchester M13 9PL, Lancs, England
Marchetti, Stefano
Chambers, Ray
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wollongong, Sch Math & Appl Stat, Ctr Stat & Survey Methodol, Wollongong, NSW 2522, AustraliaUniv Manchester, Social Stat & Ctr Census & Survey Res, Manchester M13 9PL, Lancs, England
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
Cheung, KY
Lee, SMS
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
机构:
Off Natl Forets, 21 Rue Muguet, F-39100 Dole, FranceUniv Eastern Finland, Yliopistokatu 7, Joensuu 80130, Finland
Deleuze, Christine
Durrieu, Sylvie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Montpellier, TETIS, Inrae, AgroParisTech,CNRS,CIRAD, 500 Rue Jean Francois Breton, F-34196 Montpellier, FranceUniv Eastern Finland, Yliopistokatu 7, Joensuu 80130, Finland
Durrieu, Sylvie
Barbillon, Pierre
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, AgroParisTech, INRAE, UMR MIA Paris, 16 Rue Claude Bernard, F-75231 Paris 05, FranceUniv Eastern Finland, Yliopistokatu 7, Joensuu 80130, Finland
Barbillon, Pierre
Bouriaud, Olivier
论文数: 0引用数: 0
h-index: 0
机构:
Inst Natl Informat Geog & Forestiere IGN, Lab Inventaire Forestier, 14 Rue Girardet, F-54000 Nancy, France
Stefan Cel Mare Univ Suceava, 13 Univ St, Suceava 720229, RomaniaUniv Eastern Finland, Yliopistokatu 7, Joensuu 80130, Finland
Bouriaud, Olivier
Renaud, Jean-Pierre
论文数: 0引用数: 0
h-index: 0
机构:
Off Natl Forets, 8 Allee Longchamp, F-54600 Villers Les Nancy, France
Inst Natl Informat Geog & Forestiere IGN, Lab Inventaire Forestier, 14 Rue Girardet, F-54000 Nancy, FranceUniv Eastern Finland, Yliopistokatu 7, Joensuu 80130, Finland