Averaging principle for a class of stochastic reaction-diffusion equations

被引:130
|
作者
Cerrai, Sandra [1 ]
Freidlin, Mark [2 ]
机构
[1] Univ Florence, Dipartimento Matemat Decisioni, I-50134 Florence, Italy
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Stochastic reaction-diffusion equations; Invariant measures and ergodicity; Averaging principle; Kolmogorov equations in Hilbert spaces; BEHAVIOR; SYSTEMS;
D O I
10.1007/s00440-008-0144-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the averaging principle for stochastic reaction-diffusion equations. Under some assumptions providing existence of a unique invariant measure of the fast motion with the frozen slow component, we calculate limiting slow motion. The study of solvability of Kolmogorov equations in Hilbert spaces and the analysis of regularity properties of solutions, allow to generalize the classical approach to finite-dimensional problems of this type in the case of SPDE's.
引用
收藏
页码:137 / 177
页数:41
相关论文
共 50 条
  • [21] Random attractors for a class of stochastic reaction-diffusion equations on RN with multiplicative noise
    Li, Bowen
    Jiang, Yong
    Li, Xiaojun
    COMPUTATIONAL AND MATHEMATICAL METHODS, 2019, 1 (04)
  • [22] Averaging Principles for Nonautonomous Two-Time-Scale Stochastic Reaction-Diffusion Equations with Jump
    Xu, Yong
    Wang, Ruifang
    COMPLEXITY, 2020, 2020
  • [23] DETERMINISTIC CONTROL OF STOCHASTIC REACTION-DIFFUSION EQUATIONS
    Stannat, Wilhelm
    Wessels, Lukas
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (04): : 701 - 722
  • [24] Macroscopic reduction for stochastic reaction-diffusion equations
    Wang, W. (anthony.roberts@adelaide.edu.au), 1600, Oxford University Press (78):
  • [25] Asymptotic Behavior of Stochastic Reaction-Diffusion Equations
    Wen, Hao
    Wang, Yuanjing
    Liu, Guangyuan
    Liu, Dawei
    MATHEMATICS, 2024, 12 (09)
  • [26] Macroscopic reduction for stochastic reaction-diffusion equations
    Wang, W.
    Roberts, A. J.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2013, 78 (06) : 1237 - 1264
  • [27] Reaction-Diffusion Models for a Class of Infinite-Dimensional Nonlinear Stochastic Differential Equations
    da Costa, Conrado
    Paulo da Costa, Bernardo Freitas
    Valesin, Daniel
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (02) : 1059 - 1087
  • [28] QUALITATIVE BEHAVIOR OF SOLUTIONS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS
    MANTHEY, R
    MASLOWSKI, B
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1992, 43 (02) : 265 - 289
  • [29] Phase analysis for a family of stochastic reaction-diffusion equations
    Khoshnevisan, Davar
    Kim, Kunwoo
    Mueller, Carl
    Shiu, Shang-Yuan
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [30] Stochastic Reaction-diffusion Equations Driven by Jump Processes
    Zdzisław Brzeźniak
    Erika Hausenblas
    Paul André Razafimandimby
    Potential Analysis, 2018, 49 : 131 - 201