Reaction-Diffusion Models for a Class of Infinite-Dimensional Nonlinear Stochastic Differential Equations

被引:1
|
作者
da Costa, Conrado [1 ]
Paulo da Costa, Bernardo Freitas [2 ]
Valesin, Daniel [3 ]
机构
[1] Univ Durham, Dept Math Sci, Math Sci & Comp Sci Bldg,Upper Mountjoy Campus, Durham DH1 3LE, England
[2] Univ Fed Rio de Janeiro, Inst Matemat, Ctr Tecnol Bloco C,Av Athos Silveira Ramos 149, Rio De Janeiro, RJ, Brazil
[3] Univ Groningen, Bernoulli Inst, Nijenborgh 9, NL-9747 AG Groningen, Netherlands
关键词
Reaction-diffusion models; Scaling limits of particle systems; Martingale problems; Thermodynamic limit;
D O I
10.1007/s10959-022-01187-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish the existence of solutions to a class of nonlinear stochastic differential equations of reaction-diffusion type in an infinite-dimensional space, with diffusion corresponding to a given transition kernel. The solution obtained is the scaling limit of a sequence of interacting particle systems and satisfies the martingale problem corresponding to the target differential equation.
引用
收藏
页码:1059 / 1087
页数:29
相关论文
共 50 条