Improving Twitter Aspect-Based Sentiment Analysis Using Hybrid Approach

被引:15
|
作者
Zainuddin, Nurulhuda [1 ]
Selamat, Ali [1 ]
Ibrahim, Roliana [1 ]
机构
[1] Univ Teknol Malaysia, Fac Comp, Johor Baharu 81310, Johor, Malaysia
关键词
Twitter; Aspect-based sentiment analysis; Aspect extraction; Aspect classification;
D O I
10.1007/978-3-662-49381-6_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Twitter sentiment analysis has emerged and become interesting in many field that involves social networks. Previous researches have assumed the problem as a tweet-level classification task where it only determines the general sentiment of a tweet. This paper proposed hybrid approach to analyze aspect-based sentiments for tweets. We conducted several experiments to identify explicit and implicit aspects which is crucial for aspect-based sentiment analysis. The hybrid approach between association rule mining, dependency parsing and Sentiwordnet is applied to solve this aspect-based sentiment analysis problem. The performance is evaluated using hate crime domain and other benchmark dataset in order to evaluate the results and the finding can be used to improve the accuracy for the aspect-based sentiment classification.
引用
收藏
页码:151 / 160
页数:10
相关论文
共 50 条
  • [41] Aspect-Based Sentiment Analysis for User Reviews
    Yin Zhang
    Jinyang Du
    Xiao Ma
    Haoyu Wen
    Giancarlo Fortino
    Cognitive Computation, 2021, 13 : 1114 - 1127
  • [42] Target-Aspect-Sentiment Joint Detection for Aspect-Based Sentiment Analysis
    Wan, Hai
    Yang, Yufei
    Du, Jianfeng
    Liu, Yanan
    Qi, Kunxun
    Pan, Jeff Z.
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9122 - 9129
  • [43] Sentic LDA: Improving on LDA with Semantic Similarity for Aspect-Based Sentiment Analysis
    Poria, Soujanya
    Chaturvedi, Iti
    Cambria, Erik
    Bisio, Federica
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 4465 - 4473
  • [44] Datasets for Aspect-Based Sentiment Analysis in French
    Apidianaki, Marianna
    Tannier, Xavier
    Richart, Cecile
    LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2016, : 1122 - 1126
  • [45] Data augmentation for aspect-based sentiment analysis
    Guangmin Li
    Hui Wang
    Yi Ding
    Kangan Zhou
    Xiaowei Yan
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 125 - 133
  • [46] A Survey on Multimodal Aspect-Based Sentiment Analysis
    Zhao, Hua
    Yang, Manyu
    Bai, Xueyang
    Liu, Han
    IEEE ACCESS, 2024, 12 : 12039 - 12052
  • [47] Aspect-based sentiment analysis of mobile reviews
    Gupta, Vedika
    Singh, Vivek Kumar
    Mukhija, Pankaj
    Ghose, Udayan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (05) : 4721 - 4730
  • [48] A corpus for aspect-based sentiment analysis in Vietnamese
    Nguyen, Minh-Hao
    Nguyen, Tri Minh
    Thin, Dang Van
    Nguyen, Ngan Luu-Thuy
    PROCEEDINGS OF 2019 11TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2019), 2019, : 317 - 321
  • [49] Towards Generative Aspect-Based Sentiment Analysis
    Zhang, Wenxuan
    Li, Xin
    Deng, Yang
    Bing, Lidong
    Lam, Wai
    ACL-IJCNLP 2021: THE 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 2, 2021, : 504 - 510
  • [50] Improving Federated Learning for Aspect-based Sentiment Analysis via Topic Memories
    Qin, Han
    Chen, Guimin
    Tian, Yuanhe
    Song, Yan
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 3942 - 3954