Aspect-Based Sentiment Analysis for User Reviews

被引:0
|
作者
Yin Zhang
Jinyang Du
Xiao Ma
Haoyu Wen
Giancarlo Fortino
机构
[1] University of Electronic Science and Technology of China,
[2] Zhongnan University of Economics and Law,undefined
[3] University of Calabria,undefined
来源
Cognitive Computation | 2021年 / 13卷
关键词
Aspect based; Sentiment analysis; Machine learning; Cognitive computing;
D O I
暂无
中图分类号
学科分类号
摘要
Aspect-based sentiment analysis (ABSA) can help consumers provide clear and objective sentiment recommendations through massive quantities of data and is conducive to overcoming ambiguous human weaknesses in subjective judgments. However, the robustness and accuracy of existing sentiment analysis methods must still be improved. We first propose a deep-level semiself-help sentiment annotation system based on the bidirectional encoder representation from transformers (BERT) weakly supervised classifier to address this problem. Fine-grained annotation of restaurant reviews under 18 latitudes solves the problems of insufficient data and low label accuracy. On this basis, bagging traditional machine learning algorithms and annotation systems, a novel classification model for specific aspects is proposed to explore consumer behavior preferences, real consumer feelings, and whether they are willing to consume again. The proposed approach can effectively improve the accuracy of the ABSA tasks and reduce the space-time complexity. Moreover, the proposed model can significantly reduce the quantity of data annotation engineering required.
引用
收藏
页码:1114 / 1127
页数:13
相关论文
共 50 条
  • [1] Aspect-Based Sentiment Analysis for User Reviews
    Du, Jinyang
    Zhang, Yin
    Ma, Xiao
    Wen, Haoyu
    Fortino, Giancarlo
    [J]. COGNITIVE COMPUTATION, 2021, 13 (05) : 1114 - 1127
  • [2] ASPECT-BASED SENTIMENT ANALYSIS OF USER CREATED GAME REVIEWS
    Urriza, Ian Michael
    Clarino, Maria Art Antonette
    [J]. 2021 24TH CONFERENCE OF THE ORIENTAL COCOSDA INTERNATIONAL COMMITTEE FOR THE CO-ORDINATION AND STANDARDISATION OF SPEECH DATABASES AND ASSESSMENT TECHNIQUES (O-COCOSDA), 2021, : 76 - 81
  • [3] FABSA: An aspect-based sentiment analysis dataset of user reviews
    Kontonatsios, Georgios
    Clive, Jordan
    Harrison, Georgia
    Metcalfe, Thomas
    Sliwiak, Patrycja
    Tahir, Hassan
    Ghose, Aji
    [J]. NEUROCOMPUTING, 2023, 562
  • [4] Aspect-based sentiment analysis of mobile reviews
    Gupta, Vedika
    Singh, Vivek Kumar
    Mukhija, Pankaj
    Ghose, Udayan
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (05) : 4721 - 4730
  • [5] Aspect-Based Sentiment Analysis of User Reviews in 5G Networks
    Zhang, Yin
    Lu, Huimin
    Jiang, Chi
    Li, Xin
    Tian, Xinliang
    [J]. IEEE NETWORK, 2021, 35 (04): : 228 - 233
  • [6] Aspect-based Sentiment Analysis on Mobile Application Reviews
    Gunathilaka, Sadeep
    De Silva, Nisansa
    [J]. 2022 22ND INTERNATIONAL CONFERENCE ON ADVANCES IN ICT FOR EMERGING REGIONS (ICTER), 2022,
  • [7] Aspect-based Sentiment Analysis for Indonesian Restaurant Reviews
    Ekawati, Devina
    Khodra, Masayu Leylia
    [J]. 2017 4TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATICS, CONCEPTS, THEORY, AND APPLICATIONS (ICAICTA) PROCEEDINGS, 2017,
  • [8] Unsupervised Semantic Approach of Aspect-Based Sentiment Analysis for Large-Scale User Reviews
    Al-Ghuribi, Sumaia Mohammed
    Mohd Noah, Shahrul Azman
    Tiun, Sabrina
    [J]. IEEE ACCESS, 2020, 8 : 218592 - 218613
  • [9] Towards Semantic Aspect-Based Sentiment Analysis for Arabic Reviews
    Behdenna, Salima
    Barigou, Fatiha
    Belalem, Ghalem
    [J]. INTERNATIONAL JOURNAL OF INFORMATION SYSTEMS IN THE SERVICE SECTOR, 2020, 12 (04) : 1 - 13
  • [10] Aspect-Based Sentiment Analysis for Arabic Food Delivery Reviews
    Al-Jarrah, Ibrahim
    Mustafa, Ahmad M.
    Najadat, Hassan
    [J]. ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2023, 22 (07)