KEEPING ADAPTIVE GAME AI INTERESTING

被引:0
|
作者
Szita, Istvan
Ponsen, Marc
Spronck, Pieter
机构
关键词
Game AI; cross-entropy; reinforcement; dynamic scripting;
D O I
暂无
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
We propose a method for automatically learning diverse but effective macros that can be used as components of game AI scripts. Macros are learnt by a selection-based optimisation method that maximises an interestingness measure. Our demonstrations are performed in a CRPG simulation with two wizards duelling. The results show that the macros learned this way can increase adaptivity, and diversity, while retaining playing strength.
引用
收藏
页码:70 / 74
页数:5
相关论文
共 50 条
  • [1] Adaptive Game AI for Gomoku
    Tan, Kuan Liang
    Tan, Chin Hiong
    Tan, Kay Chen
    Tay, Arthur
    PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOTS AND AGENTS, 2009, : 658 - 663
  • [2] Keeping it interesting
    Kinchin, Ian M.
    JOURNAL OF BIOLOGICAL EDUCATION, 2018, 52 (04) : 343 - 343
  • [3] Knowledge acquisition for adaptive game AI
    Ponsen, Marc
    Spronck, Pieter
    Munoz-Avila, Hector
    Aha, David W.
    SCIENCE OF COMPUTER PROGRAMMING, 2007, 67 (01) : 59 - 75
  • [4] Adaptive game AI with dynamic scripting
    Spronck, Pieter
    Ponsen, Marc
    Sprinkhuizen-Kuyper, Ida
    Postma, Eric
    MACHINE LEARNING, 2006, 63 (03) : 217 - 248
  • [5] Adaptive game AI with dynamic scripting
    Pieter Spronck
    Marc Ponsen
    Ida Sprinkhuizen-Kuyper
    Eric Postma
    Machine Learning, 2006, 63 : 217 - 248
  • [6] Effective and Diverse Adaptive Game AI
    Szita, Istvan
    Ponsen, Marc
    Spronck, Pieter
    IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2009, 1 (01) : 16 - 27
  • [7] Adaptive Game AI Architecture with Player Modeling
    Carneiro, Emanuel Mineda
    da Cunha, Adilson Marques
    Vieira Dias, Luiz Alberto
    2014 11TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS (ITNG), 2014, : 40 - 45
  • [8] A Survey of Adaptive Game AI: Considerations for Cloud Deployment
    Iuhasz, Gabriel
    Munteanu, Victor Ion
    Negru, Viorel
    INTELLIGENT DISTRIBUTED COMPUTING VII, 2014, 511 : 309 - 315
  • [9] Reinforcement Learning with Adaptive Kanerva Coding for Xpilot Game AI
    Allen, Martin
    Fritzsche, Phil
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 1521 - 1528
  • [10] Opponent modelling for case-based adaptive game AI
    Bakkes, Sander C. J.
    Spronck, Pieter H. M.
    van den Herik, H. Jaap
    ENTERTAINMENT COMPUTING, 2009, 1 (01) : 27 - 37