Preoperational Time Prediction for Percutaneous Coronary Intervention Using Machine Learning Techniques

被引:3
|
作者
Funkner, Anastasia [1 ]
Kovalchuk, Sergey [1 ]
Bochenina, Klavdiya [1 ]
机构
[1] ITMO Univ, St Petersburg, Russia
基金
俄罗斯科学基金会;
关键词
machine learning; classification; preoperational time; cardiac ischemia;
D O I
10.1016/j.procs.2016.11.021
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper addresses the prediction of preoperational time for patients with the acute coronary syndrome. Health records contain personal information, life and disease anamnesis, test results. Using this data, we tried to predict time before the coronary stent operation with regression methods. During the preprocessing, we divided health records into three clusters with k-means method and compared the results of cluster's prediction for five different classification methods. The results show that it is possible to classify initial data with the accuracy of 68.31 % on average. Pre-classification of health records has helped to improve the results of regression almost twice on average, although the accuracy of prediction is needed to be further increased.
引用
收藏
页码:172 / 176
页数:5
相关论文
共 50 条
  • [1] MACHINE LEARNING-BASED CARDIOVASCULAR EVENT PREDICTION FOR PERCUTANEOUS CORONARY INTERVENTION
    Zhou, Yijiang
    Zhu, Ruoyu
    Chen, Xiaojun
    Xu, Xiaolei
    Wang, Qiwen
    Jiang, Liujun
    Zhu, Jianhua
    Wu, Jian
    Yan, Hui
    Zhang, Li
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (09) : 127 - 127
  • [2] Machine learning models for prediction of adverse events after percutaneous coronary intervention
    Niimi, Nozomi
    Shiraishi, Yasuyuki
    Sawano, Mitsuaki
    Ikemura, Nobuhiro
    Inohara, Taku
    Ueda, Ikuko
    Fukuda, Keiichi
    Kohsaka, Shun
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] Enhancing the prediction of acute kidney injury risk after percutaneous coronary intervention using machine learning techniques: A retrospective cohort study
    Huang, Chenxi
    Murugiah, Karthik
    Mahajan, Shiwani
    Li, Shu-Xia
    Dhruva, Sanket S.
    Haimovich, Julian S.
    Wang, Yongfei
    Schulz, Wade L.
    Testani, Jeffrey M.
    Wilson, Francis P.
    Mena, Carlos I.
    Masoudi, Frederick A.
    Rumsfeld, John S.
    Spertus, John A.
    Mortazavi, Bobak J.
    Krumholz, Harlan M.
    [J]. PLOS MEDICINE, 2018, 15 (11)
  • [4] Machine learning models for prediction of adverse events after percutaneous coronary intervention
    Nozomi Niimi
    Yasuyuki Shiraishi
    Mitsuaki Sawano
    Nobuhiro Ikemura
    Taku Inohara
    Ikuko Ueda
    Keiichi Fukuda
    Shun Kohsaka
    [J]. Scientific Reports, 12
  • [5] Leveraging Machine Learning Techniques to Forecast Patient Prognosis After Percutaneous Coronary Intervention
    Zack, Chad J.
    Senecal, Conor
    Kinar, Yaron
    Metzger, Yaakov
    Bar-Sinai, Yoav
    Widmer, R. Jay
    Lennon, Ryan
    Singh, Mandeep
    Bell, Malcolm R.
    Lerman, Amir
    Gulati, Rajiv
    [J]. JACC-CARDIOVASCULAR INTERVENTIONS, 2019, 12 (14) : 1304 - 1311
  • [6] Machine Learning for Prediction of Technical Results of Percutaneous Coronary Intervention for Chronic Total Occlusion
    Nakachi, Tatsuya
    Yamane, Masahisa
    Kishi, Koichi
    Muramatsu, Toshiya
    Okada, Hisayuki
    Oikawa, Yuji
    Yoshikawa, Ryohei
    Kawasaki, Tomohiro
    Tanaka, Hiroyuki
    Katoh, Osamu
    [J]. JOURNAL OF CLINICAL MEDICINE, 2023, 12 (10)
  • [7] Machine learning prediction model of acute kidney injury after percutaneous coronary intervention
    Kuno, Toshiki
    Mikami, Takahisa
    Sahashi, Yuki
    Numasawa, Yohei
    Suzuki, Masahiro
    Noma, Shigetaka
    Fukuda, Keiichi
    Kohsaka, Shun
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [8] Machine learning prediction model of acute kidney injury after percutaneous coronary intervention
    Toshiki Kuno
    Takahisa Mikami
    Yuki Sahashi
    Yohei Numasawa
    Masahiro Suzuki
    Shigetaka Noma
    Keiichi Fukuda
    Shun Kohsaka
    [J]. Scientific Reports, 12
  • [9] Machine learning for prediction of bleeding in acute myocardial infarction patients after percutaneous coronary intervention
    Zhao, Xueyan
    Wang, Junmei
    Yang, Jingang
    Chen, Tiange
    Song, Yanan
    Li, Xiang
    Xie, Guotong
    Gao, Xiaojin
    Xu, Haiyan
    Gao, Runlin
    Yuan, Jinqing
    Yang, Yuejin
    [J]. THERAPEUTIC ADVANCES IN CHRONIC DISEASE, 2023, 14
  • [10] Machine-learning-based prediction of fractional flow reserve after percutaneous coronary intervention
    Hamaya, Rikuta
    Goto, Shinichi
    Hwang, Doyeon
    Zhang, Jinlong
    Yang, Seokhun
    Lee, Joo Myung
    Hoshino, Masahiro
    Nam, Chang-Wook
    Shin, Eun-Seok
    Doh, Joon-Hyung
    Chen, Shao-Liang
    Toth, Gabor G.
    Piroth, Zsolt
    Hakeem, Abdul
    Uretsky, Barry F.
    Hokama, Yohei
    Tanaka, Nobuhiro
    Lim, Hong-Seok
    Ito, Tsuyoshi
    Matsuo, Akiko
    Azzalini, Lorenzo
    Leesar, Massoud A.
    Collet, Carlos
    Koo, Bon-Kwon
    De Bruyne, Bernard
    Kakuta, Tsunekazu
    [J]. ATHEROSCLEROSIS, 2023, 383