MACHINE LEARNING-BASED CARDIOVASCULAR EVENT PREDICTION FOR PERCUTANEOUS CORONARY INTERVENTION

被引:4
|
作者
Zhou, Yijiang
Zhu, Ruoyu
Chen, Xiaojun
Xu, Xiaolei
Wang, Qiwen
Jiang, Liujun
Zhu, Jianhua
Wu, Jian
Yan, Hui
Zhang, Li
机构
[1] Zhejiang Univ, Sch Med, Affiliated Hosp 1, Hangzhou, Zhejiang, Peoples R China
[2] Zhejiang Univ, Coll Comp Sci & Technol, Hanghzou, Peoples R China
关键词
D O I
10.1016/S0735-1097(19)30735-1
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
1177-400
引用
收藏
页码:127 / 127
页数:1
相关论文
共 50 条
  • [1] Machine learning-based long-term outcome prediction in patients undergoing percutaneous coronary intervention
    Liu, Shangyu
    Yang, Shengwen
    Xing, Anlu
    Zheng, Lihui
    Shen, Lishui
    Tu, Bin
    Yao, Yan
    [J]. CARDIOVASCULAR DIAGNOSIS AND THERAPY, 2021, 11 (03) : 736 - 743
  • [2] Machine-learning-based prediction of fractional flow reserve after percutaneous coronary intervention
    Hamaya, Rikuta
    Goto, Shinichi
    Hwang, Doyeon
    Zhang, Jinlong
    Yang, Seokhun
    Lee, Joo Myung
    Hoshino, Masahiro
    Nam, Chang-Wook
    Shin, Eun-Seok
    Doh, Joon-Hyung
    Chen, Shao-Liang
    Toth, Gabor G.
    Piroth, Zsolt
    Hakeem, Abdul
    Uretsky, Barry F.
    Hokama, Yohei
    Tanaka, Nobuhiro
    Lim, Hong-Seok
    Ito, Tsuyoshi
    Matsuo, Akiko
    Azzalini, Lorenzo
    Leesar, Massoud A.
    Collet, Carlos
    Koo, Bon-Kwon
    De Bruyne, Bernard
    Kakuta, Tsunekazu
    [J]. ATHEROSCLEROSIS, 2023, 383
  • [3] Supervised Machine Learning-Based Cardiovascular Disease Analysis and Prediction
    Hossen, M. D. Amzad
    Tazin, Tahia
    Khan, Sumiaya
    Alam, Evan
    Sojib, Hossain Ahmed
    Khan, Mohammad Monirujjaman
    Alsufyani, Abdulmajeed
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [4] Preoperational Time Prediction for Percutaneous Coronary Intervention Using Machine Learning Techniques
    Funkner, Anastasia
    Kovalchuk, Sergey
    Bochenina, Klavdiya
    [J]. 5TH INTERNATIONAL YOUNG SCIENTIST CONFERENCE ON COMPUTATIONAL SCIENCE, YSC 2016, 2016, 101 : 172 - 176
  • [5] Machine learning models for prediction of adverse events after percutaneous coronary intervention
    Niimi, Nozomi
    Shiraishi, Yasuyuki
    Sawano, Mitsuaki
    Ikemura, Nobuhiro
    Inohara, Taku
    Ueda, Ikuko
    Fukuda, Keiichi
    Kohsaka, Shun
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [6] A Machine Learning-Based Approach to Prediction of Acute Coronary Syndrome
    Park, Ji Young
    Noh, Yung-Kyun
    Choi, Byoung Geol
    Rha, Seung-Woon
    Kim, Kee Eung
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2015, 65 (17) : S6 - S6
  • [7] Machine learning models for prediction of adverse events after percutaneous coronary intervention
    Nozomi Niimi
    Yasuyuki Shiraishi
    Mitsuaki Sawano
    Nobuhiro Ikemura
    Taku Inohara
    Ikuko Ueda
    Keiichi Fukuda
    Shun Kohsaka
    [J]. Scientific Reports, 12
  • [8] Machine Learning-based Prediction of Cardiovascular Death in Patients With Hypertrophic Cardiomyopathy
    Kochav, Stephanie M.
    Raita, Yoshihiko
    Fifer, Michael A.
    Takayama, Hiroo
    Ginns, Jonathan
    Maurer, Mathew S.
    Reilly, Muredach P.
    Hasegawa, Kohei
    Shimada, Yuichi J.
    [J]. CIRCULATION, 2019, 140
  • [9] A Machine Learning-Based Prediction Model for Cardiovascular Risk in Women With Preeclampsia
    Wang, Guan
    Zhang, Yanbo
    Li, Sijin
    Zhang, Jun
    Jiang, Dongkui
    Li, Xiuzhen
    Li, Yulin
    Du, Jie
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
  • [10] Use of machine learning-based algorithms for the prediction of procedural success in the percutaneous revascularization of coronary chronic total occlusions
    Zivelonghi, Carlo
    Vescovo, Giovanni
    Dens, Jo
    Scott, Benjamin
    Convens, Carl
    Verheye, Stefan
    Vermeersch, Paul
    Agostoni, Pierfrancesco
    [J]. ACTA CARDIOLOGICA, 2022, 77 : 32 - 32