Preoperational Time Prediction for Percutaneous Coronary Intervention Using Machine Learning Techniques

被引:3
|
作者
Funkner, Anastasia [1 ]
Kovalchuk, Sergey [1 ]
Bochenina, Klavdiya [1 ]
机构
[1] ITMO Univ, St Petersburg, Russia
基金
俄罗斯科学基金会;
关键词
machine learning; classification; preoperational time; cardiac ischemia;
D O I
10.1016/j.procs.2016.11.021
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper addresses the prediction of preoperational time for patients with the acute coronary syndrome. Health records contain personal information, life and disease anamnesis, test results. Using this data, we tried to predict time before the coronary stent operation with regression methods. During the preprocessing, we divided health records into three clusters with k-means method and compared the results of cluster's prediction for five different classification methods. The results show that it is possible to classify initial data with the accuracy of 68.31 % on average. Pre-classification of health records has helped to improve the results of regression almost twice on average, although the accuracy of prediction is needed to be further increased.
引用
收藏
页码:172 / 176
页数:5
相关论文
共 50 条
  • [41] Photovoltaic Energy Prediction Using Machine Learning Techniques
    Surribas Sayago, Gonzalo
    David Fernandez-Rodriguez, Jose
    Dominguez, Enrique
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT I, 2023, 14134 : 577 - 587
  • [42] Prediction of Employee Performance using Machine Learning Techniques
    Lather, Anu Singh
    Malhotra, Ruchika
    Saloni, Priya
    Singh, Prabhjot
    Mittal, Sarthak
    [J]. PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION SCIENCE AND SYSTEM, AISS 2019, 2019,
  • [43] Premature Birth Prediction Using Machine Learning Techniques
    Meem, Kazi Rafat Haa
    Islam, Sadia
    Adnan, Ahmed Omar Salim
    Momen, Sifat
    [J]. ARTIFICIAL INTELLIGENCE TRENDS IN SYSTEMS, VOL 2, 2022, 502 : 270 - 284
  • [44] Airfare Prices Prediction Using Machine Learning Techniques
    Tziridis, K.
    Kalampokas, Th.
    Papakostas, G. A.
    Diamantaras, K. I.
    [J]. 2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 1036 - 1039
  • [45] Prediction of diabetic retinopathy using machine learning techniques
    Jebaseeli, T. Jemima
    Durai, C. Anand Deva
    Alelyani, Salem
    Alsaqer, Mohammed Saleh
    [J]. JOURNAL OF ENGINEERING RESEARCH, 2023, 11 (2B): : 27 - 37
  • [46] Earthquake Prediction using Hybrid Machine Learning Techniques
    Salam, Mustafa Abdul
    Ibrahim, Lobna
    Abdelminaam, Diaa Salama
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (05) : 654 - 665
  • [47] Chip Performance Prediction Using Machine Learning Techniques
    Su, Min-Yan
    Lin, Wei-Chen
    Kuo, Yen-Ting
    Li, Chien-Mo
    Fang, Eric Jia-Wei
    Hsueh, Sung S-Y
    [J]. 2021 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2021,
  • [48] Diabetes prediction model using machine learning techniques
    Modak, Sandip Kumar Singh
    Jha, Vijay Kumar
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (13) : 38523 - 38549
  • [49] Neonatal Disease Prediction Using Machine Learning Techniques
    Robi Y.G.
    Sitote T.M.
    [J]. Journal of Healthcare Engineering, 2023, 2023
  • [50] Prediction of Movies popularity Using Machine Learning Techniques
    Latif, Muhammad Hassan
    Afzal, Hammad
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2016, 16 (08): : 127 - 131