Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data

被引:646
|
作者
Denny, Joshua C. [1 ,2 ]
Bastarache, Lisa [2 ]
Ritchie, Marylyn D. [3 ]
Carroll, Robert J. [2 ]
Zink, Raquel [2 ]
Mosley, Jonathan D. [1 ]
Field, Julie R. [4 ]
Pulley, Jill M. [4 ,5 ]
Ramirez, Andrea H. [1 ]
Bowton, Erica [4 ]
Basford, Melissa A. [4 ]
Carrell, David S. [6 ]
Peissig, Peggy L. [7 ]
Kho, Abel N. [8 ]
Pacheco, Jennifer A. [9 ]
Rasmussen, Luke V. [10 ]
Crosslin, David R. [11 ]
Crane, Paul K. [12 ]
Pathak, Jyotishman [13 ,14 ]
Bielinski, Suzette J. [15 ]
Pendergrass, Sarah A. [3 ]
Xu, Hua [16 ]
Hindorff, Lucia A.
Li, Rongling [17 ]
Manolio, Teri A. [17 ]
Chute, Christopher G. [13 ]
Chisholm, Rex L. [18 ]
Larson, Eric B. [6 ]
Jarvik, Gail P. [11 ,12 ,14 ]
Brilliant, Murray H. [19 ]
McCarty, Catherine A. [20 ]
Kullo, Iftikhar J. [21 ]
Haines, Jonathan L. [22 ]
Crawford, Dana C. [22 ]
Masys, Daniel R. [23 ]
Roden, Dan M. [1 ,24 ]
机构
[1] Vanderbilt Univ, Sch Med, Dept Med, Nashville, TN 37212 USA
[2] Vanderbilt Univ, Sch Med, Dept Biomed Informat, Nashville, TN 37212 USA
[3] Penn State Univ, Dept Biochem & Mol Biol, Ctr Syst Genom, University Pk, PA 16802 USA
[4] Vanderbilt Univ, Sch Med, Res Off, Nashville, TN 37212 USA
[5] Vanderbilt Univ, Sch Med, Dept Med Adm, Nashville, TN 37212 USA
[6] Grp Hlth Res Inst, Seattle, WA USA
[7] Marshfield Clin Res Fdn, Biomed Informat Res Ctr, Marshfield, WI USA
[8] Northwestern Univ, Dept Med, Feinberg Sch Med, Chicago, IL 60611 USA
[9] Northwestern Univ, Ctr Genet Med, Feinberg Sch Med, Chicago, IL 60611 USA
[10] Northwestern Univ, Dept Preventat Med, Feinberg Sch Med, Chicago, IL 60611 USA
[11] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[12] Univ Washington, Dept Med, Seattle, WA USA
[13] Mayo Clin, Div Biomed Informat, Rochester, MN USA
[14] Mayo Clin, Div Stat, Rochester, MN USA
[15] Mayo Clin, Div Epidemiol, Rochester, MN USA
[16] Univ Texas Hlth Sci Ctr Houston, Sch Biomed Informat, Houston, TX 77030 USA
[17] NHGRI, Div Genom Med, Bethesda, MD 20892 USA
[18] Northwestern Univ, Dept Cell & Mol Biol, Feinberg Sch Med, Chicago, IL 60611 USA
[19] Marshfield Clin Res Fdn, Ctr Human Genet, Marshfield, WI USA
[20] Essentia Inst Rural Hlth, Duluth, MN USA
[21] Mayo Clin, Div Cardiovasc Dis, Rochester, MN USA
[22] Vanderbilt Univ, Sch Med, Dept Mol Physiol & Biophys, Ctr Human Genet Res, Nashville, TN 37212 USA
[23] Univ Washington, Dept Biomed Informat & Med Educ, Seattle, WA 98195 USA
[24] Vanderbilt Univ, Sch Med, Dept Pharmacol, Nashville, TN 37212 USA
关键词
RISK; VARIANTS; DISEASES; BIOBANK; TRAITS; TOOL; METAANALYSIS; PHENOTYPES; MELANOMA;
D O I
10.1038/nbt.2749
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Candidate gene and genome-wide association studies (GWAS) have identified genetic variants that modulate risk for a human disease; many of these associations require further study to replicate the results. Here we report the first c large-scale application of the phenome-wide association "study (PheWAS) paradigm within electronic medical records E (EMRs), an unbiased approach to replication and discovery. v that interrogates relationships between targeted genotypes 1s and multiple phenotypes. We scanned for associations z between 3,144 single-nucleotide polymorphisms (previously N implicated by GWAS as mediators of human traits) and 1,358 EMR-derived phenotypes in 13,835 individuals of European ancestry. This PheWAS replicated 66% (51/77) of sufficiently powered prior GWAS associations and revealed 63 potentially pleiotropic associations with P < 4.6 x 10(-6) (false discovery rate < 0.1); the strongest of these novel associations were replicated in an independent cohort (n = 7,406). These findings validate PheWAS as a tool to allow unbiased interrogation across multiple phenotypes in EMR-based cohorts and to enhance analysis of the genomic basis of human disease.
引用
收藏
页码:1102 / +
页数:12
相关论文
共 50 条
  • [41] Polygenic Liability to Depression Is Associated With Multiple Medical Conditions in the Electronic Health Record: Phenome-wide Association Study of 46,782 Individuals
    Fang, Yu
    Fritsche, Lars G.
    Mukherjee, Bhramar
    Sen, Srijan
    Richmond-Rakerd, Leah S.
    [J]. BIOLOGICAL PSYCHIATRY, 2022, 92 (12) : 923 - 931
  • [42] Maternal Hypertension and Structural Birth Defects: A Phenome-Wide Association Study
    Goli, K.
    Mimi, L. E.
    Langlois, P. H.
    Canfield, M. A.
    Lupo, P. J.
    Schraw, J. M.
    [J]. BIRTH DEFECTS RESEARCH, 2022, 114 (09): : 408 - 408
  • [43] Genome-wide association studies and polygenic risk score phenome-wide association studies across complex phenotypes in the human phenotype project
    Levine, Zachary
    Kalka, Iris
    Kolobkov, Dmitry
    Rossman, Hagai
    Godneva, Anastasia
    Shilo, Smadar
    Keshet, Ayya
    Weissglas-Volkov, Daphna
    Shor, Tal
    Diament, Alon
    Talmor-Barkan, Yeela
    Aviv, Yaron
    Sharon, Tom
    Weinberger, Adina
    Segal, Eran
    [J]. MED, 2024, 5 (01): : 90 - 101.e4
  • [44] Maturation and application of phenome-wide association studies
    Liu, Shiying
    Crawford, Dana C.
    [J]. TRENDS IN GENETICS, 2022, 38 (04) : 353 - 363
  • [45] Unravelling the human genome-phenome relationship using phenome-wide association studies
    Bush, William S.
    Oetjens, Matthew T.
    Crawford, Dana C.
    [J]. NATURE REVIEWS GENETICS, 2016, 17 (03) : 129 - 145
  • [46] Hierarchical Modelling for Genome-Wide Association Data
    Heron, Eleisa
    O'Dushlaine, Colm
    [J]. ANNALS OF HUMAN GENETICS, 2009, 73 : 665 - 665
  • [47] Phenome-Wide and Genome-Wide Analyses of Quality of Life in Patients With Psychosis
    Luykx, Jurjen
    Pazoki, Raha
    Lin, Bochao
    Guloksuz, Sinan
    Schijven, Dick
    van Eijk, Kristel
    [J]. BIOLOGICAL PSYCHIATRY, 2019, 85 (10) : S194 - S194
  • [48] A Phenome-Wide Association Study (PheWAS) of COVID-19 Outcomes by Race Using the Electronic Health Records Data in Michigan Medicine
    Salvatore, Maxwell
    Gu, Tian
    Mack, Jasmine A.
    Sankar, Swaraaj Prabhu
    Patil, Snehal
    Valley, Thomas S.
    Singh, Karandeep
    Nallamothu, Brahmajee K.
    Kheterpal, Sachin
    Lisabeth, Lynda
    Fritsche, Lars G.
    Mukherjeea, Bhramar
    [J]. JOURNAL OF CLINICAL MEDICINE, 2021, 10 (07)
  • [49] Genome-Wide Association Mapping With Longitudinal Data
    Furlotte, Nicholas A.
    Eskin, Eleazar
    Eyheramendy, Susana
    [J]. GENETIC EPIDEMIOLOGY, 2012, 36 (05) : 463 - 471
  • [50] Genome-wide and Phenome-wide Approaches to Understand Variable Drug Actions in Electronic Health Records
    Robinson, Jamie R.
    Denny, Joshua C.
    Roden, Dan M.
    Van Driest, Sara L.
    [J]. CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 2018, 11 (02): : 112 - 122