Genome-Wide Association Mapping With Longitudinal Data

被引:39
|
作者
Furlotte, Nicholas A. [1 ]
Eskin, Eleazar [1 ,2 ]
Eyheramendy, Susana [3 ]
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA USA
[3] Univ Catolica Chile, Dept Stat Pontificia, Santiago, Chile
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
longitudinal; genome-wide association; mixed-model; statistical genetics; MISSING HERITABILITY; POPULATION; RELATEDNESS; TRAITS; MODELS; DISEASE; POWER; LOCI;
D O I
10.1002/gepi.21640
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Many genome-wide association studies have been performed on population cohorts that contain phenotype measurements at multiple time points. However, standard association methodologies only consider one time point. In this paper, we propose a mixed-model-based approach for performing association mapping which utilizes multiple phenotype measurements for each individual. We introduce an analytical approach to calculate statistical power and show that this model leads to increased power when compared to traditional approaches. Moreover, we show that by using this model we are able to differentiate the genetic, environmental, and residual error contributions to the phenotype. Using predictions of these components, we show how the proportion of the phenotype due to environment and genetics can be predicted and show that the ranking of individuals based on these predictions is very accurate. The software implementing this method may be found at . Genet. Epidemiol. 36:463-471, 2012. (C) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:463 / 471
页数:9
相关论文
共 50 条
  • [1] Longitudinal Data Analysis in Genome-Wide Association Studies
    Beyene, Joseph
    Hamid, Jemila S.
    [J]. GENETIC EPIDEMIOLOGY, 2014, 38 : S68 - S73
  • [2] Genome-Wide Association Studies for Bivariate Sparse Longitudinal Data
    Das, Kiranmoy
    Li, Jiahan
    Fu, Guifang
    Wang, Zhong
    Wu, Rongling
    [J]. HUMAN HEREDITY, 2011, 72 (02) : 110 - 120
  • [3] Genome-wide association mapping in bacteria?
    Falush, Daniel
    Bowden, Rory
    [J]. TRENDS IN MICROBIOLOGY, 2006, 14 (08) : 353 - 355
  • [4] Genome-wide association mapping in plants
    George, Andrew W.
    Cavanagh, Colin
    [J]. THEORETICAL AND APPLIED GENETICS, 2015, 128 (06) : 1163 - 1174
  • [5] Genome-wide association mapping in rice
    Mary Muers
    [J]. Nature Reviews Genetics, 2011, 12 (11) : 741 - 741
  • [6] Genome-wide association mapping in plants
    Andrew W. George
    Colin Cavanagh
    [J]. Theoretical and Applied Genetics, 2015, 128 : 1163 - 1174
  • [7] Fast Genome-Wide QTL Association Mapping on Pedigree and Population Data
    Zhou, Hua
    Blangero, John
    Dyer, Thomas D.
    Chan, Kei-hang K.
    Lange, Kenneth
    Sobel, Eric M.
    [J]. GENETIC EPIDEMIOLOGY, 2017, 41 (03) : 174 - 186
  • [8] Eagle for better genome-wide association mapping
    George, Andrew W.
    Verbyla, Arunas
    Bowden, Joshua
    [J]. G3-GENES GENOMES GENETICS, 2021, 11 (09):
  • [9] Fine-mapping genome-wide association studies with missing genotype data
    Kartau, Joonas
    Pirinen, Matti
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 51 - 51
  • [10] Genome-wide association mapping and genome-wide prediction of anther extrusion in CIMMYT spring wheat
    Muqaddasi, Quddoos H.
    Reif, Jochen C.
    Li, Zou
    Basnet, Bhoja R.
    Dreisigacker, Susanne
    Roder, Marion S.
    [J]. EUPHYTICA, 2017, 213 (03)