On the Riemann surface type of random planar maps

被引:17
|
作者
Gill, James T. [1 ]
Rohde, Steffen [2 ]
机构
[1] St Louis Univ, Dept Math & Comp Sci, St Louis, MO 63108 USA
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
Riemann surface; random planar maps; uniformization; SCALING LIMITS;
D O I
10.4171/RMI/749
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the (random) Riemann surfaces of the Angel Schramm uniform infinite planar triangulation and of Sheffield's infinite necklace construction are both parabolic. In other words, Brownian motion on these surfaces is recurrent. We obtain this result as a corollary to a more general theorem on subsequential distributional limits of random unbiased disc triangulations, following work of Benjamini and Schramm.
引用
收藏
页码:1071 / 1090
页数:20
相关论文
共 50 条
  • [41] Nesting Statistics in the O(n) Loop Model on Random Planar Maps
    Borot, Gaetan
    Bouttier, Jeremie
    Duplantier, Bertrand
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 404 (3) : 1125 - 1229
  • [42] Nesting Statistics in the O(n) Loop Model on Random Planar Maps
    Gaëtan Borot
    Jérémie Bouttier
    Bertrand Duplantier
    Communications in Mathematical Physics, 2023, 404 : 1125 - 1229
  • [43] Universal aspects of critical percolation on random half-planar maps
    Richier, Loic
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 45
  • [44] Scaling limits of random bipartite planar maps with a prescribed degree sequence
    Marzouk, Cyril
    RANDOM STRUCTURES & ALGORITHMS, 2018, 53 (03) : 448 - 503
  • [45] A mating-of-trees approach for graph distances in random planar maps
    Gwynne, Ewain
    Holden, Nina
    Sun, Xin
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 177 (3-4) : 1043 - 1102
  • [46] A mating-of-trees approach for graph distances in random planar maps
    Ewain Gwynne
    Nina Holden
    Xin Sun
    Probability Theory and Related Fields, 2020, 177 : 1043 - 1102
  • [47] The geometry of the space of holomorphic maps from a Riemann surface to a complex projective space
    Kallel, S
    Milgram, RJ
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1997, 47 (02) : 321 - 375
  • [48] Riemann Maps and Diameter Distance
    Herron, David A.
    AMERICAN MATHEMATICAL MONTHLY, 2012, 119 (02): : 140 - 147
  • [49] THE RAMIFICATION OF HOLOMORPHIC MAPS OVER HYPERSURFACES ON AN OPEN RIEMANN SURFACE WITH A CONFORMAL METRIC
    Lu, Canhui
    Chen, Xingdi
    HOUSTON JOURNAL OF MATHEMATICS, 2024, 50 (02): : 275 - 289
  • [50] Extending the Schwarz-Christoffel Formula to Universal Covering Maps of a Riemann Surface
    Jonathan Tsai
    Computational Methods and Function Theory, 2012, 12 : 687 - 706