On the Riemann surface type of random planar maps

被引:17
|
作者
Gill, James T. [1 ]
Rohde, Steffen [2 ]
机构
[1] St Louis Univ, Dept Math & Comp Sci, St Louis, MO 63108 USA
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
Riemann surface; random planar maps; uniformization; SCALING LIMITS;
D O I
10.4171/RMI/749
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the (random) Riemann surfaces of the Angel Schramm uniform infinite planar triangulation and of Sheffield's infinite necklace construction are both parabolic. In other words, Brownian motion on these surfaces is recurrent. We obtain this result as a corollary to a more general theorem on subsequential distributional limits of random unbiased disc triangulations, following work of Benjamini and Schramm.
引用
收藏
页码:1071 / 1090
页数:20
相关论文
共 50 条
  • [21] DUALITY OF RANDOM PLANAR MAPS VIA PERCOLATION
    Curien, Nicolas
    Richier, Loic
    ANNALES DE L INSTITUT FOURIER, 2020, 70 (06) : 2425 - 2471
  • [22] THE SYMMETRY TYPE OF A RIEMANN SURFACE
    BUJALANCE, E
    SINGERMAN, D
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1985, 51 (NOV) : 501 - 519
  • [23] RANDOM WALK ON RANDOM PLANAR MAPS: SPECTRAL DIMENSION, RESISTANCE AND DISPLACEMENT
    Gwynne, Ewain
    Miller, Jason
    ANNALS OF PROBABILITY, 2021, 49 (03): : 1097 - 1128
  • [24] Realizations of the ideal boundary of a planar Riemann surface in the sphere
    Schmieder, G
    Shiba, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (08) : 5267 - 5274
  • [25] THE BROWNIAN MAP: A UNIVERSAL LIMIT FOR RANDOM PLANAR MAPS
    Le Gall, J. -F.
    XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 420 - 428
  • [26] Random sampling of large planar maps and convex polyhedra
    Universite Bordeaux I, Talence, France
    Conf Proc Annu ACM Symp Theory Comput, (760-769):
  • [27] The distribution of the maximum vertex degree in random planar maps
    Gao, ZC
    Wormald, NC
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 89 (02) : 201 - 230
  • [28] ON THE SCALING LIMIT OF RANDOM PLANAR MAPS WITH LARGE FACES
    Le Gall, Jean-Francois
    Miermont, Gregory
    XVITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2010, : 470 - 474
  • [29] INFINITE RANDOM PLANAR MAPS RELATED TO CAUCHY PROCESSES
    Budd, Timothy
    Curien, Nicolas
    Marzouk, Cyril
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2018, 5 : 749 - 791
  • [30] Boundary States of the Potts Model on Random Planar Maps
    Niedner, Benjamin
    Atkin, Max R.
    Wheater, John F.
    1ST KARL SCHWARZSCHILD MEETING ON GRAVITATIONAL PHYSICS, 2016, 170 : 387 - 393