Approximation algorithm for coloring of dotted interval graphs

被引:3
|
作者
Yanovsky, Vladimir [1 ]
机构
[1] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 1A1, Canada
关键词
approximation algorithms; dotted interval graph; intersection graph; minimum coloring; microsatellite genotyping;
D O I
10.1016/j.ipl.2008.03.021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dotted interval graphs were introduced by Aumann et al. [Y. Aumann, M. Lewenstein, O. Melamud, R. Pinter, Z. Yakhini, Dotted interval graphs and high throughput genotyping, in: ACM-SIAM Symposium on Discrete Algorithms. SODA 2005, pp. 339-348] as a generalization of interval graphs. The problem of coloring these graphs found application in high-throughput genotyping. Jiang [M. Jiang, Approximating minimum coloring and maximum independent set in dotted interval graphs, Information Processing Letters 98 (2006) 29-33] improves the approximation ratio of Aumann et al. [Y. Aumann, M. Lewenstein, O. Melamud, R. Pinter, Z. Yakhini, Dotted interval graphs and high throughput genotyping, in: ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, pp. 339-348]. In this work we improve the approximation ratio of Jiang [M. Jiang, Approximating minimum coloring and maximum independent set in dotted interval graphs, Information Processing Letters 98 (2006) 29-33] and Aumarm et al. [Y. Aumann, M. Lewenstein, O. Melamud, R. Pinter, Z. Yakhini, Dotted interval graphs and high throughput genotyping, in: ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, pp. 339-348]. In the exposition we develop a generalization of the problem of finding the maximum number of non-attacking queens on a triangle. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 44
页数:4
相关论文
共 50 条
  • [41] A note on First-Fit coloring of interval graphs
    Narayanaswamy, N. S.
    Babu, R. Subhash
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2008, 25 (01): : 49 - 53
  • [42] COLORING INTERVAL-GRAPHS WITH FIRST-FIT
    KIERSTEAD, HA
    QIN, J
    DISCRETE MATHEMATICS, 1995, 144 (1-3) : 47 - 57
  • [43] A Note on First-Fit Coloring of Interval Graphs
    N. S. Narayanaswamy
    R. Subhash Babu
    Order, 2008, 25 : 49 - 53
  • [44] ON LIST COLORING AND LIST HOMOMORPHISM OF PERMUTATION AND INTERVAL GRAPHS
    Enright, Jessica
    Stewart, Lorna
    Tardos, Gabor
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (04) : 1675 - 1685
  • [45] Tree coloring of distance graphs with a real interval set
    Zuo, Liancui
    Yu, Qinglin
    Wu, Jianhang
    APPLIED MATHEMATICS LETTERS, 2006, 19 (12) : 1341 - 1344
  • [46] Complexity of approximation of 3-edge-coloring of graphs
    Kochol, Martin
    Krivonakova, Nad'a
    Smejova, Silvia
    Srankova, Katarina
    INFORMATION PROCESSING LETTERS, 2008, 108 (04) : 238 - 241
  • [47] On approximation algorithms for coloring k-colorable graphs
    Xie, XZ
    Ono, T
    Hirata, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2003, E86A (05): : 1046 - 1051
  • [48] On-line interval graphs coloring - Modification of the First-Fit algorithm and its performance ratio
    Bieganowski, Bartosz
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (08)
  • [49] An ant-based algorithm for coloring graphs
    Bui, Thang N.
    Nguyen, ThanhVu H.
    Patel, Chirag M.
    Phan, Kim-Anh T.
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (02) : 190 - 200
  • [50] An effective heuristic algorithm for sum coloring of graphs
    Wu, Qinghua
    Hao, Jin-Kao
    COMPUTERS & OPERATIONS RESEARCH, 2012, 39 (07) : 1593 - 1600