Approximation algorithm for coloring of dotted interval graphs

被引:3
|
作者
Yanovsky, Vladimir [1 ]
机构
[1] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 1A1, Canada
关键词
approximation algorithms; dotted interval graph; intersection graph; minimum coloring; microsatellite genotyping;
D O I
10.1016/j.ipl.2008.03.021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dotted interval graphs were introduced by Aumann et al. [Y. Aumann, M. Lewenstein, O. Melamud, R. Pinter, Z. Yakhini, Dotted interval graphs and high throughput genotyping, in: ACM-SIAM Symposium on Discrete Algorithms. SODA 2005, pp. 339-348] as a generalization of interval graphs. The problem of coloring these graphs found application in high-throughput genotyping. Jiang [M. Jiang, Approximating minimum coloring and maximum independent set in dotted interval graphs, Information Processing Letters 98 (2006) 29-33] improves the approximation ratio of Aumann et al. [Y. Aumann, M. Lewenstein, O. Melamud, R. Pinter, Z. Yakhini, Dotted interval graphs and high throughput genotyping, in: ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, pp. 339-348]. In this work we improve the approximation ratio of Jiang [M. Jiang, Approximating minimum coloring and maximum independent set in dotted interval graphs, Information Processing Letters 98 (2006) 29-33] and Aumarm et al. [Y. Aumann, M. Lewenstein, O. Melamud, R. Pinter, Z. Yakhini, Dotted interval graphs and high throughput genotyping, in: ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, pp. 339-348]. In the exposition we develop a generalization of the problem of finding the maximum number of non-attacking queens on a triangle. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 44
页数:4
相关论文
共 50 条
  • [31] Fragmented coloring of proper interval and split graphs
    Diwan, Ajit
    Pal, Soumitra
    Ranade, Abhiram
    DISCRETE APPLIED MATHEMATICS, 2015, 193 : 110 - 118
  • [32] Online coloring co-interval graphs
    School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
    Sci. Iran., 2009, 1 D (1-7):
  • [33] Approximation Algorithms for the Interval Constrained Coloring Problem
    Althaus, Ernst
    Canzar, Stefan
    Elbassioni, Khaled
    Karrenbauer, Andreas
    Mestre, Julian
    ALGORITHMICA, 2011, 61 (02) : 342 - 361
  • [34] Approximation Algorithms for the Interval Constrained Coloring Problem
    Ernst Althaus
    Stefan Canzar
    Khaled Elbassioni
    Andreas Karrenbauer
    Julián Mestre
    Algorithmica, 2011, 61 : 342 - 361
  • [35] A FAST ALGORITHM FOR COLORING MEYNIEL GRAPHS
    HERTZ, A
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 50 (02) : 231 - 240
  • [36] Visual algorithm for coloring planar graphs
    Kurapov S.V.
    Davidovsky M.V.
    Tolok A.V.
    2018, National Research Nuclear University (10): : 1 - 33
  • [37] AN ALGORITHM FOR COLORING PERFECT PLANAR GRAPHS
    STEWART, IA
    INFORMATION PROCESSING LETTERS, 1989, 31 (02) : 97 - 101
  • [38] AN ALGORITHM FOR COLORING PERFECT PLANAR GRAPHS
    STEWART, IA
    LECTURE NOTES IN COMPUTER SCIENCE, 1987, 287 : 58 - 64
  • [39] An algorithm for coloring some perfect graphs
    Haddadene, HA
    Gravier, S
    Maffray, F
    DISCRETE MATHEMATICS, 1998, 183 (1-3) : 1 - 16
  • [40] Approximation algorithm for maximum edge coloring
    Feng, Wangsen
    Zhang, Li'ang
    Wang, Hanpin
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (11) : 1022 - 1029