Approximation algorithm for coloring of dotted interval graphs

被引:3
|
作者
Yanovsky, Vladimir [1 ]
机构
[1] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 1A1, Canada
关键词
approximation algorithms; dotted interval graph; intersection graph; minimum coloring; microsatellite genotyping;
D O I
10.1016/j.ipl.2008.03.021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dotted interval graphs were introduced by Aumann et al. [Y. Aumann, M. Lewenstein, O. Melamud, R. Pinter, Z. Yakhini, Dotted interval graphs and high throughput genotyping, in: ACM-SIAM Symposium on Discrete Algorithms. SODA 2005, pp. 339-348] as a generalization of interval graphs. The problem of coloring these graphs found application in high-throughput genotyping. Jiang [M. Jiang, Approximating minimum coloring and maximum independent set in dotted interval graphs, Information Processing Letters 98 (2006) 29-33] improves the approximation ratio of Aumann et al. [Y. Aumann, M. Lewenstein, O. Melamud, R. Pinter, Z. Yakhini, Dotted interval graphs and high throughput genotyping, in: ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, pp. 339-348]. In this work we improve the approximation ratio of Jiang [M. Jiang, Approximating minimum coloring and maximum independent set in dotted interval graphs, Information Processing Letters 98 (2006) 29-33] and Aumarm et al. [Y. Aumann, M. Lewenstein, O. Melamud, R. Pinter, Z. Yakhini, Dotted interval graphs and high throughput genotyping, in: ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, pp. 339-348]. In the exposition we develop a generalization of the problem of finding the maximum number of non-attacking queens on a triangle. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 44
页数:4
相关论文
共 50 条
  • [1] Approximating minimum coloring and maximum independent set in dotted interval graphs
    Jiang, MH
    INFORMATION PROCESSING LETTERS, 2006, 98 (01) : 29 - 33
  • [2] Dotted Interval Graphs
    Aumann, Yonatan
    Lewenstein, Moshe
    Melamud, Oren
    Pinter, Ron
    Yakhini, Zohar
    ACM TRANSACTIONS ON ALGORITHMS, 2012, 8 (02)
  • [3] A COLORING ALGORITHM FOR INTERVAL-GRAPHS
    SLUSAREK, M
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 379 : 471 - 480
  • [4] Optimization problems in dotted interval graphs
    Hermelin, Danny
    Mestre, Julian
    Rawitz, Dror
    DISCRETE APPLIED MATHEMATICS, 2014, 174 : 66 - 72
  • [5] Optimization Problems in Dotted Interval Graphs
    Hermelin, Danny
    Mestre, Julian
    Rawitz, Dror
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2012, 7551 : 46 - 56
  • [6] Dotted Interval Graphs and High Throughput Genotyping
    Aumann, Yonatan
    Lewenstein, Moshe
    Melamud, Oren
    Pinter, Ron Y.
    Yakhini, Zohar
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 339 - 348
  • [7] On interval Δ-coloring of bipartite graphs
    A. M. Magomedov
    Automation and Remote Control, 2015, 76 : 80 - 87
  • [8] On interval Δ-coloring of bipartite graphs
    Magomedov, A. M.
    AUTOMATION AND REMOTE CONTROL, 2015, 76 (01) : 80 - 87
  • [9] An approximation result for the interval coloring problem on claw-free chordal graphs
    Confessore, G
    Dell'Olmo, P
    Giordani, S
    DISCRETE APPLIED MATHEMATICS, 2002, 120 (1-3) : 73 - 90
  • [10] INTERVAL INCIDENCE COLORING OF SUBCUBIC GRAPHS
    Malafiejska, Anna
    malafiejski, Michal
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (02) : 427 - 441