Coffee plants respond to drought and elevated [CO2] through changes in stomatal function, plant hydraulic conductance, and aquaporin expression

被引:31
|
作者
Avila, Rodrigo T. [1 ]
Cardoso, Amanda A. [1 ]
de Almeida, Wellington L. [1 ]
Costa, Lucas C. [1 ]
Machado, Kleiton L. G. [1 ]
Barbosa, Marcela L. [1 ]
de Souza, Raylla P. B. [1 ]
Oliveira, Leonardo A. [1 ]
Batista, Diego S. [1 ]
Martins, Samuel C. V. [1 ]
Ramalho, Jose D. C. [2 ,3 ]
DaMatta, Fabio M. [1 ]
机构
[1] Univ Fed Vicosa, Dept Biol Vegetal, BR-36570900 Vicosa, MG, Brazil
[2] Univ Lisboa ULisboa, Dept Recursos Nat Ambiente & Terr DRAT, Inst Super Agron ISA, PlantStress & Biodivers Lab,Ctr Estudos Florestai, Ave Republ, P-2784505 Oeiras, Portugal
[3] Univ NOVA Lisboa UNL, Fac Ciencias & Tecnol FCT, Unidade Geobiociencias Geoengn & Geotecnol GeoBio, P-2829516 Monte De Caparica, Caparica, Portugal
关键词
Aquaporin; Coffea arabica; Elevated [CO2; Hydraulic conductance; Stomatal response; Whole-plant transpiration; WATER-USE EFFICIENCY; GENE-EXPRESSION; ARABICA; PHOTOSYNTHESIS; TRANSPIRATION; ARCHITECTURE; RESISTANCE; IMPACTS; CLOSURE; REDUCE;
D O I
10.1016/j.envexpbot.2020.104148
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Rising air CO2 concentration ([CO2]) is believed to mitigate the negative impacts of global climate changes such as increased air temperatures and drought events on plant growth and survival. Nonetheless, how elevated [CO2] affects the way coffee (Coffea arabica L.) plants sense and respond to drought remains a critical unknown. In this study, potted coffee plants were cultivated under two air [CO2] (ca. 400 ppm or 700 ppm) in open top chambers under greenhouse conditions. After a 5-month exposure to [CO2] treatments, plants were submitted to a progressive, controlled soil water deficit down to 20 % soil field capacity. Under well-watered (100 % field capacity) conditions, 700-plants displayed lower whole-plant transpiration rates (T) than their 400-counterparts. Changes in T were unrelated to stomatal conductances at the leaf scale (as well as stomatal morphology) or foliar ABA levels, but they were rather associated with faster stomata closure rates upon rapid increases in vapor pressure deficit in the 700-plants. During drought, 700-plants were able to maintain higher water potentials and plant hydraulic conductances for longer in parallel to higher T than their 400-counterparts. Under elevated [CO2], the faster stomatal closure rates (irrigated conditions) or the maintenance of plant hydraulic conductances (drought conditions) were associated with higher (3 to 40-fold) transcript abundance of most aquaporin genes. Altogether, our results suggest that elevated [CO2] has marked implications on how coffee plants respond to soil water deficit, ultimately permitting 700-plants to have improved fitness under drought when compared to 400-plants.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [1] Carbon gain is coordinated with enhanced stomatal conductance and hydraulic architecture in coffee plants acclimated to elevated [CO2]: The interplay with irradiance supply
    de Oliveira, Ueliton S.
    de Souza, Antonio H.
    de Andrade, Moab T.
    Oliveira, Leonardo A.
    Gouvea, Debora G.
    Martins, Samuel C. V.
    Ramalho, Jose D. C.
    Cardoso, Amanda A.
    DaMatta, Fabio M.
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 204
  • [2] Coordinated responses of plant hydraulic architecture with the reduction of stomatal conductance under elevated CO2 concentration
    Hao, Guang-You
    Holbrook, N. Michele
    Zwieniecki, Maciej A.
    Gutschick, Vincent P.
    BassiriRad, Hormoz
    TREE PHYSIOLOGY, 2018, 38 (07) : 1041 - 1052
  • [3] Elevated CO2 Modulates Plant Hydraulic Conductance Through Regulation of PIPs Under Progressive Soil Drying in Tomato Plants
    Li, Shenglan
    Fang, Liang
    Hegelund, Josefine Nymark
    Liu, Fulai
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [4] Interactive effects of elevated CO2, nitrogen and drought on leaf area, stomatal conductance, and evapotranspiration of wheat
    Li, FS
    Kang, SZ
    Zhang, JH
    AGRICULTURAL WATER MANAGEMENT, 2004, 67 (03) : 221 - 233
  • [5] Editorial: Modulation of Stomatal Response by Elevated CO2 in Plants Under Drought and Heat Stress
    Li, Xiangnan
    Palta, Jairo A.
    Liu, Fulai
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [6] Nocturnal stomatal conductance responses to rising [CO2], temperature and drought
    Zeppel, Melanie J. B.
    Lewis, James D.
    Chaszar, Brian
    Smith, Renee A.
    Medlyn, Belinda E.
    Huxman, Travis E.
    Tissue, David T.
    NEW PHYTOLOGIST, 2012, 193 (04) : 929 - 938
  • [7] Stomatal Conductance and Morphology of Arbuscular Mycorrhizal Wheat Plants Response to Elevated CO2 and NaCl Stress
    Zhu, Xiancan
    Cao, Qingjun
    Sun, Luying
    Yang, Xiaoqin
    Yang, Wenying
    Zhang, Hua
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [8] STOMATAL CONDUCTANCE AND CO2 ASSIMILATION AS SCREENING TOOLS FOR DROUGHT RESISTANCE IN SORGHUM
    ALHAMDANI, SH
    MURPHY, JM
    TODD, GW
    CANADIAN JOURNAL OF PLANT SCIENCE, 1991, 71 (03) : 689 - 694
  • [9] Ecohydrologic impact of reduced stomatal conductance in forests exposed to elevated CO2
    Warren, Jeffrey M.
    Poetzelsberger, Elisabeth
    Wullschleger, Stan D.
    Thornton, Peter E.
    Hasenauer, Hubert
    Norby, Richard J.
    ECOHYDROLOGY, 2011, 4 (02) : 196 - 210
  • [10] Stomatal conductance in mature deciduous forest trees exposed to elevated CO2
    Keel S.G.
    Pepin S.
    Leuzinger S.
    Körner C.
    Trees Struct. Funct., 2007, 2 (151-159): : 151 - 159