Coffee plants respond to drought and elevated [CO2] through changes in stomatal function, plant hydraulic conductance, and aquaporin expression

被引:31
|
作者
Avila, Rodrigo T. [1 ]
Cardoso, Amanda A. [1 ]
de Almeida, Wellington L. [1 ]
Costa, Lucas C. [1 ]
Machado, Kleiton L. G. [1 ]
Barbosa, Marcela L. [1 ]
de Souza, Raylla P. B. [1 ]
Oliveira, Leonardo A. [1 ]
Batista, Diego S. [1 ]
Martins, Samuel C. V. [1 ]
Ramalho, Jose D. C. [2 ,3 ]
DaMatta, Fabio M. [1 ]
机构
[1] Univ Fed Vicosa, Dept Biol Vegetal, BR-36570900 Vicosa, MG, Brazil
[2] Univ Lisboa ULisboa, Dept Recursos Nat Ambiente & Terr DRAT, Inst Super Agron ISA, PlantStress & Biodivers Lab,Ctr Estudos Florestai, Ave Republ, P-2784505 Oeiras, Portugal
[3] Univ NOVA Lisboa UNL, Fac Ciencias & Tecnol FCT, Unidade Geobiociencias Geoengn & Geotecnol GeoBio, P-2829516 Monte De Caparica, Caparica, Portugal
关键词
Aquaporin; Coffea arabica; Elevated [CO2; Hydraulic conductance; Stomatal response; Whole-plant transpiration; WATER-USE EFFICIENCY; GENE-EXPRESSION; ARABICA; PHOTOSYNTHESIS; TRANSPIRATION; ARCHITECTURE; RESISTANCE; IMPACTS; CLOSURE; REDUCE;
D O I
10.1016/j.envexpbot.2020.104148
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Rising air CO2 concentration ([CO2]) is believed to mitigate the negative impacts of global climate changes such as increased air temperatures and drought events on plant growth and survival. Nonetheless, how elevated [CO2] affects the way coffee (Coffea arabica L.) plants sense and respond to drought remains a critical unknown. In this study, potted coffee plants were cultivated under two air [CO2] (ca. 400 ppm or 700 ppm) in open top chambers under greenhouse conditions. After a 5-month exposure to [CO2] treatments, plants were submitted to a progressive, controlled soil water deficit down to 20 % soil field capacity. Under well-watered (100 % field capacity) conditions, 700-plants displayed lower whole-plant transpiration rates (T) than their 400-counterparts. Changes in T were unrelated to stomatal conductances at the leaf scale (as well as stomatal morphology) or foliar ABA levels, but they were rather associated with faster stomata closure rates upon rapid increases in vapor pressure deficit in the 700-plants. During drought, 700-plants were able to maintain higher water potentials and plant hydraulic conductances for longer in parallel to higher T than their 400-counterparts. Under elevated [CO2], the faster stomatal closure rates (irrigated conditions) or the maintenance of plant hydraulic conductances (drought conditions) were associated with higher (3 to 40-fold) transcript abundance of most aquaporin genes. Altogether, our results suggest that elevated [CO2] has marked implications on how coffee plants respond to soil water deficit, ultimately permitting 700-plants to have improved fitness under drought when compared to 400-plants.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilization
    Domec, Jean-Christophe
    Palmroth, Sari
    Ward, Eric
    Maier, Chris A.
    Therezien, M.
    Oren, Ram
    PLANT CELL AND ENVIRONMENT, 2009, 32 (11): : 1500 - 1512
  • [32] Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes
    Yu, Q
    Zhang, YG
    Liu, YF
    Shi, PL
    ANNALS OF BOTANY, 2004, 93 (04) : 435 - 441
  • [33] Elevated air [CO2] improves photosynthetic performance and alters biomass accumulation and partitioning in drought-stressed coffee plants
    Avila, Rodrigo T.
    de Almeida, Wellington L.
    Costa, Lucas C.
    Machado, Kleiton L. G.
    Barbosa, Marcela L.
    de Souza, Raylla P. B.
    Martino, Pedro B.
    Juarez, Marco A. T.
    Marcal, Dinorah M. S.
    Martins, Samuel C. V.
    Ramalho, Jose D. C.
    DaMatta, Fabio M.
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2020, 177
  • [34] Differential Effects of Pseudomonas mendocina and Glomus intraradices on Lettuce Plants Physiological Response and Aquaporin PIP2 Gene Expression Under Elevated Atmospheric CO2 and Drought
    Maria del Mar Alguacil
    Josef Kohler
    Fuensanta Caravaca
    Antonio Roldán
    Microbial Ecology, 2009, 58
  • [35] Physiological Responses of Plants to Combined Drought and Heat under Elevated CO2
    Abdelhakim, Lamis Osama Anwar
    Zhou, Rong
    Ottosen, Carl-Otto
    AGRONOMY-BASEL, 2022, 12 (10):
  • [36] Differential Effects of Pseudomonas mendocina and Glomus intraradices on Lettuce Plants Physiological Response and Aquaporin PIP2 Gene Expression Under Elevated Atmospheric CO2 and Drought
    del Mar Alguacil, Maria
    Kohler, Josef
    Caravaca, Fuensanta
    Roldan, Antonio
    MICROBIAL ECOLOGY, 2009, 58 (04) : 942 - 951
  • [37] Stomatal Development and Conductance of a Tropical Forage Legume Are Regulated by Elevated [CO2] Under Moderate Warming
    Habermann, Eduardo
    Dias de Oliveira, Eduardo A.
    Contin, Daniele Ribeiro
    San Martin, Juca A. B.
    Curtarelli, Lucas
    Gonzalez-Meler, Miquel A.
    Martinez, Carlos Alberto
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [38] Acclimation of photosynthesis and stomatal conductance to elevated CO2 in canopy leaves of wheat at two nitrogen supplies
    Del Pozo, A.
    Perez, P.
    Morcuende, R.
    Gutierrez, D.
    Alonso, A.
    Martinez-Carrasco, R.
    WHEAT PRODUCTION IN STRESSED ENVIRONMENTS, 2007, 12 : 611 - +
  • [39] Effects of elevated O-3 and CO2 concentrations on photosynthesis and stomatal conductance in Scots pine
    Kellomaki, S
    Wang, KY
    PLANT CELL AND ENVIRONMENT, 1997, 20 (08): : 995 - 1006
  • [40] RESPONSE OF PHOTOSYNTHESIS AND CONDUCTANCE TO LIGHT, CO2, TEMPERATURE AND HUMIDITY IN TOMATO PLANTS ACCLIMATED TO AMBIENT AND ELEVATED CO2
    STANGHELLINI, C
    BUNCE, JA
    PHOTOSYNTHETICA, 1993, 29 (04) : 487 - 497