Multistep lattice Boltzmann methods: Theory and applications

被引:24
|
作者
Wilde, Dominik [1 ]
Kraemer, Andreas [1 ,2 ]
Kuellmer, Knut [1 ]
Foysi, Holger [3 ]
Reith, Dirk [1 ]
机构
[1] Bonn Rhein Sieg Univ Appl Sci, Inst Technol Renewables & Energy Efficient Engn T, Grantham Allee 20, D-53757 St Augustin, Germany
[2] NHLBI, Bldg 10, Bethesda, MD 20892 USA
[3] Univ Siegen, Dept Mech Engn, Siegen, Germany
关键词
Adams-Moulton; BDF; Lattice Boltzmann method; multistep; stability; Taylor-Green; temporal discretization; time integration; trapezoidal rule; CIRCULAR-CYLINDER; BGK MODELS; SIMULATION; EQUATION;
D O I
10.1002/fld.4716
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a framework for incorporating arbitrary implicit multistep schemes into the lattice Boltzmann method. While the temporal discretization of the lattice Boltzmann equation is usually derived using a second-order trapezoidal rule, it appears natural to augment the time discretization by using multistep methods. The effect of incorporating multistep methods into the lattice Boltzmann method is studied in terms of accuracy and stability. Numerical tests for the third-order accurate Adams-Moulton method and the second-order backward differentiation formula show that the temporal order of the method can be increased when the stability properties of multistep methods are considered in accordance with the second Dahlquist barrier.
引用
收藏
页码:156 / 169
页数:14
相关论文
共 50 条
  • [1] Relativistic lattice Boltzmann methods: Theory and applications
    Gabbana, A.
    Simeoni, D.
    Succi, S.
    Tripiccione, R.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2020, 863 : 1 - 63
  • [2] Lattice Boltzmann methods for combustion applications
    Hosseini, Seyed Ali
    Boivin, Pierre
    Thevenin, Dominique
    Karlin, Ilya
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2024, 102
  • [3] Lattice Boltzmann Methods for Industrial Applications
    Sharma, Keerti Vardhan
    Straka, Robert
    Tavares, Frederico Wanderley
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (36) : 16205 - 16234
  • [4] THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS
    BENZI, R
    SUCCI, S
    VERGASSOLA, M
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03): : 145 - 197
  • [5] Lattice boltzmann methods for magnetohydrodynamic flows in fusion applications
    Pattison, M. J.
    Premnath, K. N.
    Morley, N. B.
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2007, 52 (04) : 812 - 816
  • [6] Lattice Boltzmann methods for shallow water flow applications
    Thoemmes, Guido
    Seaied, Mohammed
    Banda, Mapundi K.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 55 (07) : 673 - 692
  • [7] Lattice Boltzmann methods: High performance computing and engineering applications
    Brenner, G
    Zeiser, T
    Beronov, K
    Lammers, P
    Bernsdorf, J
    [J]. PARALLEL COMPUTATIONAL FLUID DYNAMICS: NEW FRONTIERS AND MULTI-DISCIPLINARY APPLICATIONS, PROCEEDINGS, 2003, : 3 - 12
  • [8] Theory and applications of an alternative lattice Boltzmann grid refinement algorithm
    Dupuis, A
    Chopard, B
    [J]. PHYSICAL REVIEW E, 2003, 67 (06):
  • [9] Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation
    He, XY
    Luo, LS
    [J]. PHYSICAL REVIEW E, 1997, 56 (06): : 6811 - 6817
  • [10] Progress in lattice Boltzmann methods for magnetohydrodynamic flows relevant to fusion applications
    Pattison, M. J.
    Premnath, K. N.
    Morley, N. B.
    Abdou, M. A.
    [J]. FUSION ENGINEERING AND DESIGN, 2008, 83 (04) : 557 - 572