Relativistic lattice Boltzmann methods: Theory and applications

被引:28
|
作者
Gabbana, A. [1 ,2 ,3 ]
Simeoni, D. [1 ,2 ,3 ,4 ]
Succi, S. [5 ,6 ]
Tripiccione, R. [1 ,2 ]
机构
[1] Univ Ferrara, I-44122 Ferrara, Italy
[2] INFN Ferrara, I-44122 Ferrara, Italy
[3] Berg Univ Wuppertal, D-42119 Wuppertal, Germany
[4] Univ Cyprus, CY-1678 Nicosia, Cyprus
[5] Italian Inst Technol, Ctr Life Nano Sci La Sapienza, Viale Regina Elena 295, I-00161 Rome, Italy
[6] Natl Res Council Italy, Ist Applicaz Calcolo, Via Taurini 19, I-00185 Rome, Italy
基金
欧洲研究理事会;
关键词
THERMODYNAMICS; EQUATION; MODEL;
D O I
10.1016/j.physrep.2020.03.004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a systematic account of recent developments of the relativistic Lattice Boltzmann method (RLBM) for dissipative hydrodynamics. We describe in full detail a unified, compact and dimension-independent procedure to design relativistic LB schemes capable of bridging the gap between the ultra-relativistic regime, k(B)T >> mc(2), and the non-relativistic one, k(B)T << mc(2). We further develop a systematic derivation of the transport coefficients as a function of the kinetic relaxation time in d = 1, 2, 3 spatial dimensions. The latter step allows to establish a quantitative bridge between the parameters of the kinetic model and the macroscopic transport coefficients. This leads to accurate calibrations of simulation parameters and is also relevant at the theoretical level, as it provides neat numerical evidence of the correctness of the Chapman-Enskog procedure. We present an extended set of validation tests, in which simulation results based on the RLBMs are compared with existing analytic or semi-analytic results in the mildly-relativistic (k(B)T similar to mc(2)) regime for the case of shock propagations in quark-gluon plasmas and laminar electronic flows in ultra-clean graphene samples. It is hoped and expected that the material collected in this paper may allow the interested readers to reproduce the present results and generate new applications of the RLBM scheme. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 63
页数:63
相关论文
共 50 条
  • [1] Multistep lattice Boltzmann methods: Theory and applications
    Wilde, Dominik
    Kraemer, Andreas
    Kuellmer, Knut
    Foysi, Holger
    Reith, Dirk
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2019, 90 (03) : 156 - 169
  • [2] Theory and applications of the relativistic Boltzmann equation
    Kremer, Gilberto M.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (02)
  • [4] Lattice Boltzmann methods for combustion applications
    Hosseini, Seyed Ali
    Boivin, Pierre
    Thevenin, Dominique
    Karlin, Ilya
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2024, 102
  • [5] Lattice Boltzmann Methods for Industrial Applications
    Sharma, Keerti Vardhan
    Straka, Robert
    Tavares, Frederico Wanderley
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (36) : 16205 - 16234
  • [6] THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS
    BENZI, R
    SUCCI, S
    VERGASSOLA, M
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03): : 145 - 197
  • [7] Lattice boltzmann methods for magnetohydrodynamic flows in fusion applications
    Pattison, M. J.
    Premnath, K. N.
    Morley, N. B.
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2007, 52 (04) : 812 - 816
  • [8] Lattice Boltzmann methods for shallow water flow applications
    Thoemmes, Guido
    Seaied, Mohammed
    Banda, Mapundi K.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 55 (07) : 673 - 692
  • [9] Fully relativistic lattice Boltzmann algorithm
    Romatschke, P.
    Mendoza, M.
    Succi, S.
    [J]. PHYSICAL REVIEW C, 2011, 84 (03):
  • [10] Beyond moments: relativistic lattice Boltzmann methods for radiative transport in computational astrophysics
    Weih, L. R.
    Gabbana, A.
    Simeoni, D.
    Rezzolla, L.
    Succi, S.
    Tripiccione, R.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 498 (03) : 3374 - 3394