Multistep lattice Boltzmann methods: Theory and applications

被引:24
|
作者
Wilde, Dominik [1 ]
Kraemer, Andreas [1 ,2 ]
Kuellmer, Knut [1 ]
Foysi, Holger [3 ]
Reith, Dirk [1 ]
机构
[1] Bonn Rhein Sieg Univ Appl Sci, Inst Technol Renewables & Energy Efficient Engn T, Grantham Allee 20, D-53757 St Augustin, Germany
[2] NHLBI, Bldg 10, Bethesda, MD 20892 USA
[3] Univ Siegen, Dept Mech Engn, Siegen, Germany
关键词
Adams-Moulton; BDF; Lattice Boltzmann method; multistep; stability; Taylor-Green; temporal discretization; time integration; trapezoidal rule; CIRCULAR-CYLINDER; BGK MODELS; SIMULATION; EQUATION;
D O I
10.1002/fld.4716
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a framework for incorporating arbitrary implicit multistep schemes into the lattice Boltzmann method. While the temporal discretization of the lattice Boltzmann equation is usually derived using a second-order trapezoidal rule, it appears natural to augment the time discretization by using multistep methods. The effect of incorporating multistep methods into the lattice Boltzmann method is studied in terms of accuracy and stability. Numerical tests for the third-order accurate Adams-Moulton method and the second-order backward differentiation formula show that the temporal order of the method can be increased when the stability properties of multistep methods are considered in accordance with the second Dahlquist barrier.
引用
收藏
页码:156 / 169
页数:14
相关论文
共 50 条
  • [41] Simulation of nasal flow by lattice Boltzmann methods
    Finck, M.
    Haenel, D.
    Wlokas, I.
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2007, 37 (06) : 739 - 749
  • [42] Modern lattice Boltzmann methods for multiphase microflows
    Falcucci, G.
    Ubertini, S.
    Chiappini, D.
    Succi, S.
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2011, 76 (05) : 712 - 725
  • [43] Flow prediction by lattice-Boltzmann methods
    Filippova, O
    Hänel, D
    [J]. COMPUTATIONAL FLUID DYNAMICS 2000, 2001, : 523 - 528
  • [44] Stability of lattice Boltzmann methods in hydrodynamic regimes
    Worthing, RA
    Mozer, J
    Seeley, G
    [J]. PHYSICAL REVIEW E, 1997, 56 (02): : 2243 - 2253
  • [45] Nonequilibrium entropy limiters in lattice Boltzmann methods
    Brownlee, R. A.
    Gorban, A. N.
    Levesley, J.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (2-3) : 385 - 406
  • [46] Lattice Boltzmann methods for metallurgical process simulation
    Redl, C
    [J]. COMPUTATIONAL MODELING OF MATERIALS, MINERALS AND METALS PROCESSING, 2001, : 513 - 522
  • [47] On the cubic velocity deviations in lattice Boltzmann methods
    Házi, G
    Kávrán, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (12): : 3127 - 3136
  • [48] Optimal relaxation collisions for lattice Boltzmann methods
    Zhao, Fuzhang
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (02) : 172 - 185
  • [49] Constructing relaxation systems for lattice Boltzmann methods
    Simonis, Stephan
    Frank, Martin
    Krause, Mathias J.
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 137
  • [50] Truncation error analysis of lattice Boltzmann methods
    Holdych, DJ
    Noble, DR
    Georgiadis, JG
    Buckius, RO
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 193 (02) : 595 - 619