Terrestrial lidar and hyperspectral data fusion products for geological outcrop analysis

被引:93
|
作者
Buckley, Simon J. [1 ]
Kurz, Tobias H. [1 ]
Howell, John A. [1 ]
Schneider, Danilo [2 ]
机构
[1] Uni CIPR, N-5020 Bergen, Norway
[2] Tech Univ Dresden, Inst Photogrammetry & Remote Sensing, D-01062 Dresden, Germany
关键词
Ground-based; Virtual outcrop models; Integration; Terrestrial laser scanning; Visualisation; Surface modelling; INTENSITY DATA; CLASSIFICATION; VISUALIZATION; INTEGRATION; MODELS;
D O I
10.1016/j.cageo.2013.01.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Close-range hyperspectral imaging is an emerging technique for remotely mapping mineral content and distributions in inaccessible geological outcrop surfaces, allowing subtle chemical variations to be identified with high resolution and accuracy. Terrestrial laser scanning (lidar) is an established method for rapidly obtaining three-dimensional geometry, with unparalleled point density and precision. The combination of these highly complementary data types - 3D topography and surface properties enables the production of value-added photorealistic outcrop models, adding new information that can be used for solving geological problems. This paper assesses the benefits of merging lidar and hyperspectral imaging, and presents qualitative and quantitative means of analysing the fused datasets. The integration requires an accurate co-registration, so that the 2D hyperspectral classification products can be given real measurement units. This stage is reliant on using a model that correctly describes the imaging geometry of the hyperspectral instrument, allowing image pixels and 3D points in the lidar model to be related. Increased quantitative analysis is then possible, as areas and spatial relationships can be examined by projecting classified material boundaries into 3D space. The combined data can be interpreted in a very visual manner, by colouring and texturing the lidar geometry with hyperspectral mineral maps. Because hyperspectral processing often results in several image products and classifications, these can be difficult to analyse simultaneously. A novel visualisation method is presented, where photorealistic lidar models are superimposed with multiple texture-mapped layers, allowing blending between conventional and hyperspectral imaging products to assist with interpretation and validation. The advantages and potential of the data fusion are illustrated with example outcrop data. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:249 / 258
页数:10
相关论文
共 50 条
  • [31] CLASSIFICATION OF CLOUDY HYPERSPECTRAL IMAGE AND LIDAR DATA BASED ON FEATURE FUSION AND DECISION FUSION
    Luo, Renbo
    Liao, Wenzhi
    Zhang, Hongyan
    Pi, Youguo
    Philips, Wilfried
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2518 - 2521
  • [32] SPARSE MODELING FOR HYPERSPECTRAL IMAGERY WITH LIDAR DATA FUSION FOR SUBPIXEL MAPPING
    Castrodad, Alexey
    Khuon, Timothy
    Rand, Robert
    Sapiro, Guillermo
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 7275 - 7278
  • [33] Fusion Methods for Hyperspectral Image and LIDAR Data at Pixel-Level
    Abraham, C. Diana
    Aravinth, J.
    2018 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2018,
  • [34] Classification of hyperspectral and LIDAR data using extinction profiles with feature fusion
    Zhang, Mengmeng
    Ghamisi, Pedram
    Li, Wei
    REMOTE SENSING LETTERS, 2017, 8 (10) : 957 - 966
  • [35] Urban tree species mapping using hyperspectral and lidar data fusion
    Alonzo, Michael
    Bookhagen, Bodo
    Roberts, Dar A.
    REMOTE SENSING OF ENVIRONMENT, 2014, 148 : 70 - 83
  • [36] COLLABORATIVE CLASSIFICATION OF HYPERSPECTRAL AND LIDAR DATA WITH INFORMATION FUSION AND DEEP NETS
    Chen, Chen
    Zhao, Xudong
    Li, Wei
    Tao, Ran
    Du, Qian
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2475 - 2478
  • [37] Urban tree species mapping using hyperspectral and lidar data fusion
    Alonzo, Michael
    Bookhagen, Bodo
    Roberts, Dar A.
    Remote Sensing of Environment, 2014, 148 : 70 - 83
  • [38] Fusion of waveform LiDAR data and hyperspectral imagery for land cover classification
    Wang, Hongzhou
    Glennie, Craig
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 108 : 1 - 11
  • [39] Modality Fusion Vision Transformer for Hyperspectral and LiDAR Data Collaborative Classification
    Yang, Bin
    Wang, Xuan
    Xing, Ying
    Cheng, Chen
    Jiang, Weiwei
    Feng, Quanlong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 17052 - 17065
  • [40] A Triplet Semisupervised Deep Network for Fusion Classification of Hyperspectral and LiDAR Data
    Li, Jiaojiao
    Ma, Yinle
    Song, Rui
    Xi, Bobo
    Hong, Danfeng
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60