COLLABORATIVE CLASSIFICATION OF HYPERSPECTRAL AND LIDAR DATA WITH INFORMATION FUSION AND DEEP NETS

被引:0
|
作者
Chen, Chen [1 ]
Zhao, Xudong [2 ]
Li, Wei [2 ]
Tao, Ran [2 ]
Du, Qian [3 ]
机构
[1] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing, Peoples R China
[2] Beijing Inst Technol, Sch Informat & Elect, Beijing, Peoples R China
[3] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
基金
中国国家自然科学基金;
关键词
Hyperspectral Image; Information Fusion; Convolutional Neural Network; Deep Learning; Pattern Recognition;
D O I
10.1109/igarss.2019.8898443
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Convolutional neural network (CNN) receives extensive attention in hyperspectral image classification. While hyperspectral images contain abundant spectral information but lack spatial information, which usually contributes to poor classification results. In this paper, a novel classification framework called information fusion based CNN (IF-CNN) is proposed to compensate for the shortcomings of hyperspectral images. The proposed method merges hyperspectral images with abundant spectral information and LiDAR images with rich spatial information as the input of classification framework. Furthermore, the framework consists of two convolutional neural networks: one-dimensional CNN for extracting spectral features, and two-dimensional CNN for extracting spatial correlation features. Experimental results demonstrate that the proposed method achieves excellent performance compared with some existing methods.
引用
收藏
页码:2475 / 2478
页数:4
相关论文
共 50 条
  • [1] Multiple Information Collaborative Fusion Network for Joint Classification of Hyperspectral and LiDAR Data
    Tang, Xu
    Zou, Yizhou
    Ma, Jingjing
    Zhang, Xiangrong
    Liu, Fang
    Jiao, Licheng
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [2] DEEP FUSION OF HYPERSPECTRAL AND LIDAR DATA FOR THEMATIC CLASSIFICATION
    Chen, Yushi
    Li, Chunyang
    Ghamisi, Pedram
    Shi, Chunyu
    Gu, Yanfeng
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3591 - 3594
  • [3] Modality Fusion Vision Transformer for Hyperspectral and LiDAR Data Collaborative Classification
    Yang, Bin
    Wang, Xuan
    Xing, Ying
    Cheng, Chen
    Jiang, Weiwei
    Feng, Quanlong
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 17052 - 17065
  • [4] A Triplet Semisupervised Deep Network for Fusion Classification of Hyperspectral and LiDAR Data
    Li, Jiaojiao
    Ma, Yinle
    Song, Rui
    Xi, Bobo
    Hong, Danfeng
    Du, Qian
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [5] Hyperspectral and LiDAR Data Fusion Using Collaborative Representation
    Du, Qian
    Ball, John E.
    Ge, Chiru
    [J]. ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY XXVI, 2020, 11392
  • [6] Hyperspectral and LiDAR Data Classification Using Kernel Collaborative Representation Based Residual Fusion
    Ge, Chiru
    Du, Qian
    Li, Wei
    Li, Yunsong
    Sun, Weiwei
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (06) : 1963 - 1973
  • [7] Information Fusion for Classification of Hyperspectral and LiDAR Data Using IP-CNN
    Zhang, Mengmeng
    Li, Wei
    Tao, Ran
    Li, Hengchao
    Du, Qian
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] FUSION OF HYPERSPECTRAL AND LIDAR DATA IN CLASSIFICATION OF URBAN AREAS
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    Phinn, Stuart
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [9] Hyperspectral and LiDAR data fusion in features based classification
    Farsat Heeto Abdulrahman
    [J]. Arabian Journal of Geosciences, 2021, 14 (24)
  • [10] Fusion of Hyperspectral Image and LiDAR Data and Classification using Deep Convolutional Neural Networks
    Salman, Mesut
    Yuksel, Seniha Esen
    [J]. 2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,