Algorithms for Sparse k-Monotone Regression

被引:2
|
作者
Sidorov, Sergei P. [1 ]
Faizliev, Alexey R. [1 ]
Gudkov, Alexander A. [1 ]
Mironov, Sergei, V [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Saratov, Russia
关键词
Greedy algorithms; Pool-adjacent-violators algorithm; Isotonic regression; Monotone regression; Frank-Wolfe type algorithm; CONVEX-FUNCTIONS SUBJECT; ISOTONIC REGRESSION; APPROXIMATION; INEQUALITIES; SEQUENCES; SPLINES;
D O I
10.1007/978-3-319-93031-2_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of constructing k-monotone regression is to find a vector z is an element of R-n with the lowest square error of approximation to a given vector y is an element of R-n (not necessary k-monotone) under condition of k-monotonicity of z. The problem can be rewritten in the form of a convex programming problem with linear constraints. The paper proposes two different approaches for finding a sparse k-monotone regression (Frank-Wolfe-type algorithm and k-monotone pool adjacent violators algorithm). A software package for this problem is developed and implemented in R. The proposed algorithms are compared using simulated data.
引用
收藏
页码:546 / 556
页数:11
相关论文
共 50 条
  • [41] Approximation bounds for some sparse kernel regression algorithms
    Zhang, T
    NEURAL COMPUTATION, 2002, 14 (12) : 3013 - 3042
  • [42] Algorithms for Optimizing the Ratio of Monotone k-Submodular Functions
    Chan, Hau
    Loukides, Grigorios
    Su, Zhenghui
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT III, 2021, 12459 : 3 - 19
  • [43] Greedy forward selection algorithms to sparse Gaussian process regression
    Sun, Ping
    Yao, Xin
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 159 - +
  • [44] Sparse multinomial logistic regression: Fast algorithms and generalization bounds
    Krishnapuram, B
    Carin, L
    Figueiredo, MAT
    Hartemink, AJ
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (06) : 957 - 968
  • [45] Fundamental limits and algorithms for sparse linear regression with sublinear sparsity
    Truong, Lan V.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [46] Unlinked monotone regression
    Balabdaoui, Fadoua
    Doss, Charles R.
    Durot, Cécile
    Journal of Machine Learning Research, 2021, 22
  • [47] Unlinked Monotone Regression
    Balabdaoui, Fadoua
    Doss, Charles R.
    Durot, Cecile
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [48] MONOTONE MEDIAN REGRESSION
    CRYER, JD
    WRIGHT, FT
    CASADY, RJ
    ROBERTSO.T
    ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (05): : 1459 - &
  • [49] ALGORITHMS FOR ROBUST LINEAR REGRESSION BY EXPLOITING THE CONNECTION TO SPARSE SIGNAL RECOVERY
    Jin, Yuzhe
    Rao, Bhaskar D.
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 3830 - 3833
  • [50] Sparse regression and support recovery with L2-Boosting algorithms
    Champion, Magali
    Cierco-Ayrolles, Christine
    Gadat, Sebastien
    Vignes, Matthieu
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 155 : 19 - 41