Algorithms for Sparse k-Monotone Regression

被引:2
|
作者
Sidorov, Sergei P. [1 ]
Faizliev, Alexey R. [1 ]
Gudkov, Alexander A. [1 ]
Mironov, Sergei, V [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Saratov, Russia
关键词
Greedy algorithms; Pool-adjacent-violators algorithm; Isotonic regression; Monotone regression; Frank-Wolfe type algorithm; CONVEX-FUNCTIONS SUBJECT; ISOTONIC REGRESSION; APPROXIMATION; INEQUALITIES; SEQUENCES; SPLINES;
D O I
10.1007/978-3-319-93031-2_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of constructing k-monotone regression is to find a vector z is an element of R-n with the lowest square error of approximation to a given vector y is an element of R-n (not necessary k-monotone) under condition of k-monotonicity of z. The problem can be rewritten in the form of a convex programming problem with linear constraints. The paper proposes two different approaches for finding a sparse k-monotone regression (Frank-Wolfe-type algorithm and k-monotone pool adjacent violators algorithm). A software package for this problem is developed and implemented in R. The proposed algorithms are compared using simulated data.
引用
收藏
页码:546 / 556
页数:11
相关论文
共 50 条
  • [31] Entropy estimate for k-monotone functions via small ball probability of integrated Brownian motion
    Gao, Fuchang
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 : 121 - 130
  • [32] SCALABLE ALGORITHMS FOR THE SPARSE RIDGE REGRESSION
    Xie, Weijun
    Deng, Xinwei
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (04) : 3359 - 3386
  • [33] Algorithms and error estimations for monotone regression on partially preordered sets
    Hansohm, Juergen
    JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (05) : 1043 - 1050
  • [34] Fast Algorithms for Sparse Reduced-Rank Regression
    Dubois, Benjamin
    Delmas, Jean-Francois
    Obozinski, Guillaume
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [35] Fast and efficient algorithms for sparse semiparametric bifunctional regression
    Novo, Silvia
    Vieu, Philippe
    Aneiros, German
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2021, 63 (04) : 606 - 638
  • [36] Incremental Sparse Linear Regression Algorithms for Face Recognition
    Liu, Xiaolan
    Liu, Jiao
    Liu, Xiaolan
    Kong, Zhaoming
    Yang, Xiaowei
    PROCEEDINGS OF 2018 TENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2018, : 69 - 74
  • [37] Rejoinder: Sparse Regression: Scalable Algorithms and Empirical Performance
    Bertsimas, Dimitris
    Pauphilet, Jean
    Van Parys, Bart
    STATISTICAL SCIENCE, 2020, 35 (04) : 623 - 624
  • [38] ALGORITHMS FOR APPROXIMATE SPARSE REGRESSION AND NEAREST INDUCED HULLS
    Cardinal, Jean
    Ooms, Aurelien
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2022, 13 (01) : 377 - 398
  • [39] SIMPLE ALGORITHMS FOR SPARSE LINEAR REGRESSION WITH UNCERTAIN COVARIATES
    Chen, Yudong
    Caramanis, Constantine
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 413 - 415
  • [40] A UNIFIED VIEW OF DECENTRALIZED ALGORITHMS FOR SPARSE LINEAR REGRESSION
    Maros, Marie
    Scutari, Gesualdo
    2023 IEEE 9TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, CAMSAP, 2023, : 471 - 475