Non-Abelian statistics from an Abelian model

被引:17
|
作者
Wootton, James R. [1 ]
Lahtinen, Ville [1 ]
Wang, Zhenghan [2 ]
Pachos, Jiannis K. [1 ]
机构
[1] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Calif Santa Barbara, Stn Q, Microsoft Res, Santa Barbara, CA 93106 USA
来源
PHYSICAL REVIEW B | 2008年 / 78卷 / 16期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevB.78.161102
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is well known that the Abelian Z(2) anyonic model (toric code) can be realized on a highly entangled two-dimensional spin lattice, where the anyons are quasiparticles located at the end points of stringlike concatenations of Pauli operators. Here we show that the same entangled states of the same lattice are capable of supporting the non-Abelian Ising model, where the concatenated operators are elements of the Clifford group. The Ising anyons are shown to be essentially superpositions of the Abelian toric code anyons, reproducing the required fusion, braiding, and statistical properties. We propose a string framing and ancillary qubits to implement the nontrivial chirality of this model.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Majorana Fermions and Non-Abelian Statistics in Three Dimensions
    Teo, Jeffrey C. Y.
    Kane, C. L.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (04)
  • [42] Multi-Higgs model with Abelian and non-Abelian discrete symmetries
    Machado, A. C. B.
    Pleitez, V.
    [J]. XXIII CONFERENCE ON NEUTRINO PHYSICS AND ASTROPHYSICS, 2008, 136
  • [43] Josephson junction of non-Abelian superconductors and non-Abelian Josephson vortices
    Nitta, Muneto
    [J]. NUCLEAR PHYSICS B, 2015, 899 : 78 - 90
  • [44] Non-Abelian statistics of vortices with multiple Majorana fermions
    Hirono, Yuji
    Yasui, Shigehiro
    Itakura, Kazunori
    Nitta, Muneto
    [J]. PHYSICAL REVIEW B, 2012, 86 (01):
  • [45] Model of chiral spin liquids with Abelian and non-Abelian topological phases
    Chen, Jyong-Hao
    Mudry, Christopher
    Chamon, Claudio
    Tsvelik, A. M.
    [J]. PHYSICAL REVIEW B, 2017, 96 (22)
  • [46] ABELIAN AND NON-ABELIAN BOSONIZATION - THE OPERATOR SOLUTION OF THE WZW SIGMA MODEL
    DOAMARAL, RLPG
    RUIZ, JES
    [J]. PHYSICAL REVIEW D, 1991, 43 (06): : 1943 - 1948
  • [47] ABELIAN VERSUS NON-ABELIAN HIGGS-MODEL IN 3 DIMENSIONS
    BUCHMULLER, W
    PHILIPSEN, O
    [J]. PHYSICS LETTERS B, 1995, 354 (3-4) : 403 - 408
  • [48] Note on Schwinger mechanism and a non-Abelian instability in a non-Abelian plasma
    Nair, V. P.
    Yelnikov, Alexandr
    [J]. PHYSICAL REVIEW D, 2010, 82 (12):
  • [49] Non-abelian cohomology of abelian Anosov actions
    Katok, A
    Nitica, V
    Török, A
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 259 - 288
  • [50] CHAOS IN ABELIAN AND NON-ABELIAN HIGGS SYSTEMS
    DEY, B
    KUMAR, CN
    SEN, A
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (10): : 1755 - 1772