Polymorphic lambda calculus and subtyping

被引:0
|
作者
Fiech, A [1 ]
Schmidt, DA
机构
[1] Mem Univ Newfoundland, Dept Comp Sci, St John, NF A1B 3X5, Canada
[2] Kansas State Univ, Dept Comp & Informat Sci, Manhattan, KS 66506 USA
关键词
second-order lambda calculus; subtyping; polymorphism;
D O I
10.1016/S0304-3975(00)00333-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a denotational model for F-subset of or equal to the extension of second-order lambda calculus with subtyping defined in Cardelli and Wegner (ACM Comput. Surveys 17(4) (1985) 471-522.) Types are interpreted as arbitrary cpos and elements of types as natural transformations. We prove the soundness of out, model with respect to the equational theory of F-subset of or equal to (Cardelli et al. (Internat. Conf. on Theoretical Aspects of Computer Software, Lecture Notes in Computer Science, Vol. 526, Springer, Berlin, 1991, pp. 750-770)) and show coherence. Our model is of independent interest, because it integrates ad hoc and parametric polymorphism in an elegant fashion, admits nontrivial records and record update operations, and formalizes an ''order faithfulness'' criterion for well-behaved multiple subtyping. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:111 / 140
页数:30
相关论文
共 50 条
  • [41] Objects and their lambda calculus
    Tzouvaras, A
    [J]. THEORETICAL COMPUTER SCIENCE, 2001, 258 (1-2) : 209 - 232
  • [42] The lambda calculus is algebraic
    Selinger, P
    [J]. JOURNAL OF FUNCTIONAL PROGRAMMING, 2002, 12 : 549 - 566
  • [43] A lambda calculus with forms
    Lumpe, M
    [J]. SOFTWARE COMPOSITION, 2005, 3628 : 83 - 98
  • [44] An Introduction to the Lambda Calculus
    Csoernyei, Zoltan
    Devai, Gergely
    [J]. CENTRAL EUROPEAN FUNCTIONAL PROGRAMMING SCHOOL, 2008, 5161 : 87 - 111
  • [45] MODELS OF THE LAMBDA CALCULUS
    KOYMANS, CPJ
    [J]. INFORMATION AND CONTROL, 1982, 52 (03): : 306 - 332
  • [46] Graphic Lambda Calculus
    Buliga, Marius
    [J]. COMPLEX SYSTEMS, 2013, 22 (04): : 311 - 360
  • [47] Godelization in the lambda calculus
    Goldberg, M
    [J]. INFORMATION PROCESSING LETTERS, 2000, 75 (1-2) : 13 - 16
  • [48] The safe lambda calculus
    Blum, William
    Ong, C. -H. Luke
    [J]. TYPED LAMBDA CALCULI AND APPLICATIONS, PROCEEDINGS, 2007, 4583 : 39 - +
  • [49] The intensional lambda calculus
    Artemov, Sergei
    Bonelli, Eduardo
    [J]. LOGICAL FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2007, 4514 : 12 - +
  • [50] A Simpler Lambda Calculus
    Jay, Barry
    [J]. PROCEEDINGS OF THE 2019 ACM SIGPLAN WORKSHOP ON PARTIAL EVALUATION AND PROGRAM MANIPULATION (PEPM '19), 2019, : 1 - 9