Polymorphic lambda calculus and subtyping

被引:0
|
作者
Fiech, A [1 ]
Schmidt, DA
机构
[1] Mem Univ Newfoundland, Dept Comp Sci, St John, NF A1B 3X5, Canada
[2] Kansas State Univ, Dept Comp & Informat Sci, Manhattan, KS 66506 USA
关键词
second-order lambda calculus; subtyping; polymorphism;
D O I
10.1016/S0304-3975(00)00333-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a denotational model for F-subset of or equal to the extension of second-order lambda calculus with subtyping defined in Cardelli and Wegner (ACM Comput. Surveys 17(4) (1985) 471-522.) Types are interpreted as arbitrary cpos and elements of types as natural transformations. We prove the soundness of out, model with respect to the equational theory of F-subset of or equal to (Cardelli et al. (Internat. Conf. on Theoretical Aspects of Computer Software, Lecture Notes in Computer Science, Vol. 526, Springer, Berlin, 1991, pp. 750-770)) and show coherence. Our model is of independent interest, because it integrates ad hoc and parametric polymorphism in an elegant fashion, admits nontrivial records and record update operations, and formalizes an ''order faithfulness'' criterion for well-behaved multiple subtyping. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:111 / 140
页数:30
相关论文
共 50 条
  • [31] Polymorphic subtyping in O'Haskell
    Nordlander, J
    [J]. SCIENCE OF COMPUTER PROGRAMMING, 2002, 43 (2-3) : 93 - 127
  • [32] Polymorphic subtyping without distributivity
    Chrzaszcz, J
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 1998, 1998, 1450 : 346 - 355
  • [33] The dagger lambda calculus
    Atzemoglou, Philip
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2014, (172): : 217 - 235
  • [34] A Braided Lambda Calculus
    Hasegawa, Masahito
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2021, (353): : 94 - 108
  • [35] Lambda calculus with patterns
    Klop, Jan Willem
    van Oostrom, Vincent
    de Vrijer, Roel
    [J]. THEORETICAL COMPUTER SCIENCE, 2008, 398 (1-3) : 16 - 31
  • [36] Lambda Calculus With Types
    Rezus, Adrian
    [J]. STUDIA LOGICA, 2015, 103 (06) : 1319 - 1326
  • [37] Clocked lambda calculus
    Endrullis, Jorg
    Hendriks, Dimitri
    Klop, Jan Willem
    Polonsky, Andrew
    [J]. MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2017, 27 (05) : 782 - 806
  • [38] The algebraic lambda calculus
    Vaux, Lionel
    [J]. MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2009, 19 (05) : 1029 - 1059
  • [39] On the lambda Y calculus
    Statman, R
    [J]. 17TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2002, : 159 - 166
  • [40] THE SAFE LAMBDA CALCULUS
    Blum, William
    Ong, C. -H. Luke
    [J]. LOGICAL METHODS IN COMPUTER SCIENCE, 2009, 5 (01)