Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference

被引:58
|
作者
Aubin-Frankowski, Pierre-Cyril [1 ]
Vert, Jean-Philippe [1 ,2 ]
机构
[1] PSL Res Univ, CBIO Ctr Computat Biol, MINES ParisTech, F-75006 Paris, France
[2] Google Res, Brain Team, F-75009 Paris, France
关键词
NETWORK INFERENCE; EXPRESSION; HETEROGENEITY; CIRCUITRY; DYNAMICS;
D O I
10.1093/bioinformatics/btaa576
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Single-cell RNA sequencing (scRNA-seq) offers new possibilities to infer gene regulatory network (GRNs) for biological processes involving a notion of time, such as cell differentiation or cell cycles. It also raises many challenges due to the destructive measurements inherent to the technology. Results: In this work, we propose a new method named GRISLI for de novo GRN inference from scRNA-seq data. GRISLI infers a velocity vector field in the space of scRNA-seq data from profiles of individual cells, and models the dynamics of cell trajectories with a linear ordinary differential equation to reconstruct the underlying GRN with a sparse regression procedure. We show on real data that GRISLI outperforms a recently proposed state-of-the-art method for GRN reconstruction from scRNA-seq data.
引用
收藏
页码:4774 / 4780
页数:7
相关论文
共 50 条
  • [41] Comparison of transformations for single-cell RNA-seq data
    Ahlmann-Eltze, Constantin
    Huber, Wolfgang
    NATURE METHODS, 2023, 20 (05) : 665 - +
  • [42] Identifying gene expression programs in single-cell RNA-seq data using linear correlation explanation
    Nussbaum, Yulia I.
    Hossain, K. S. M. Tozammel
    Kaifi, Jussuf
    Warren, Wesley C.
    Shyu, Chi-Ren
    Mitchem, Jonathan B.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2024, 154
  • [43] Tumor genetic analysis from single-cell RNA-seq data
    Nawy, Tal
    NATURE METHODS, 2018, 15 (07) : 571 - 571
  • [44] Utilizing RNA-Seq Data for Cancer Network Inference
    Cai, Ying
    Fendler, Bernard
    Atwal, Gurinder S.
    2012 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS), 2012, : 46 - 49
  • [45] Tumor genetic analysis from single-cell RNA-seq data
    Tal Nawy
    Nature Methods, 2018, 15 : 571 - 571
  • [46] SIRV: spatial inference of RNA velocity at the single-cell resolution
    Abdelaal, Tamim
    Grossouw, Laurens M.
    Pasterkamp, R. Jeroen
    Lelieveldt, Boudewijn P. F.
    Reinders, Marcel J. T.
    Mahfouz, Ahmed
    NAR GENOMICS AND BIOINFORMATICS, 2024, 6 (03)
  • [47] Comparison of Gene Selection Methods for Clustering Single-cell RNA-seq Data
    Zhu, Xiaoshu
    Wang, Jianxin
    Li, Rongruan
    Peng, Xiaoqing
    CURRENT BIOINFORMATICS, 2023, 18 (01) : 1 - 11
  • [48] FastCount: A Fast Gene Count Software for Single-cell RNA-seq Data
    Liu, Jinpeng
    Liu, Xinan
    Yu, Ye
    Wang, Chi
    Liu, Jinze
    12TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS (ACM-BCB 2021), 2021,
  • [49] Differential gene network analysis from single cell RNA-seq
    Yikai Wang
    Hao Wu
    Tianwei Yu
    Journal of Genetics and Genomics, 2017, 44 (06) : 331 - 334
  • [50] Differential gene network analysis from single cell RNA-seq
    Wang, Yikai
    Wu, Hao
    Yu, Tianwei
    JOURNAL OF GENETICS AND GENOMICS, 2017, 44 (06) : 331 - 334