Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference

被引:58
|
作者
Aubin-Frankowski, Pierre-Cyril [1 ]
Vert, Jean-Philippe [1 ,2 ]
机构
[1] PSL Res Univ, CBIO Ctr Computat Biol, MINES ParisTech, F-75006 Paris, France
[2] Google Res, Brain Team, F-75009 Paris, France
关键词
NETWORK INFERENCE; EXPRESSION; HETEROGENEITY; CIRCUITRY; DYNAMICS;
D O I
10.1093/bioinformatics/btaa576
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Single-cell RNA sequencing (scRNA-seq) offers new possibilities to infer gene regulatory network (GRNs) for biological processes involving a notion of time, such as cell differentiation or cell cycles. It also raises many challenges due to the destructive measurements inherent to the technology. Results: In this work, we propose a new method named GRISLI for de novo GRN inference from scRNA-seq data. GRISLI infers a velocity vector field in the space of scRNA-seq data from profiles of individual cells, and models the dynamics of cell trajectories with a linear ordinary differential equation to reconstruct the underlying GRN with a sparse regression procedure. We show on real data that GRISLI outperforms a recently proposed state-of-the-art method for GRN reconstruction from scRNA-seq data.
引用
收藏
页码:4774 / 4780
页数:7
相关论文
共 50 条
  • [21] BraCeR: B-cell-receptor reconstruction and clonality inference from single-cell RNA-seq
    Lindeman, Ida
    Emerton, Guy
    Mamanova, Lira
    Snir, Omri
    Polanski, Krzysztof
    Qiao, Shuo-Wang
    Sollid, Ludvig M.
    Teichmann, Sarah A.
    Stubbington, Michael J. T.
    NATURE METHODS, 2018, 15 (08) : 563 - 565
  • [22] BraCeR: B-cell-receptor reconstruction and clonality inference from single-cell RNA-seq
    Ida Lindeman
    Guy Emerton
    Lira Mamanova
    Omri Snir
    Krzysztof Polanski
    Shuo-Wang Qiao
    Ludvig M. Sollid
    Sarah A. Teichmann
    Michael J. T. Stubbington
    Nature Methods, 2018, 15 : 563 - 565
  • [23] RNA Velocity: Molecular Kinetics from Single-Cell RNA-Seq
    Svensson, Valentine
    Pachter, Lior
    MOLECULAR CELL, 2018, 72 (01) : 7 - 9
  • [24] SINGLE-CELL ANALYSIS From single-cell RNA-seq to transcriptional regulation
    La Manno, Gioele
    NATURE BIOTECHNOLOGY, 2019, 37 (12) : 1421 - 1422
  • [25] TiC2D: Trajectory Inference From Single-Cell RNA-Seq Data Using Consensus Clustering
    Gan, Yanglan
    Li, Ning
    Guo, Cheng
    Zou, Guobing
    Guan, Jihong
    Zhou, Shuigeng
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (04) : 2512 - 2522
  • [26] scENT for Revealing Gene Clusters From Single-Cell RNA-Seq Data
    Rao, Fan
    Chen, Minghan
    Yang, Defu
    Morrell, Bess
    Song, Qianqian
    Zhu, Wentao
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (03) : 2266 - 2277
  • [27] SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation
    Matsumoto, Hirotaka
    Kiryu, Hisanori
    Furusawa, Chikara
    Ko, Minoru S. H.
    Ko, Shigeru B. H.
    Gouda, Norio
    Hayashi, Tetsutaro
    Nikaido, Itoshi
    BIOINFORMATICS, 2017, 33 (15) : 2314 - 2321
  • [28] Gene regulation and lens development: insights from single-cell RNA-seq analysis
    Cvekl, A.
    Mcgreal, R.
    Yilin, Z.
    Phil, W.
    Larry, D.
    Deyou, Z.
    ACTA OPHTHALMOLOGICA, 2018, 96 : 27 - 27
  • [29] Inference and Simulation of Clonal Phylogenies in Acute Myeloid Leukemia Using Single-Cell RNA-SEQ
    Valtierra-Gutierrez, Ilse A.
    Stiegler, Veronika
    van Noort, Charlotte W.
    Vieth, Beate
    Bagnoli, Johannes
    Enard, Wolfgang
    Hellmann, Ines
    ANNALS OF HEMATOLOGY, 2019, 98 : S33 - S34
  • [30] Computational analysis of alternative polyadenylation from standard RNA-seq and single-cell RNA-seq data
    Gao, Yipeng
    Li, Wei
    MRNA 3' END PROCESSING AND METABOLISM, 2021, 655 : 225 - 243