Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference

被引:58
|
作者
Aubin-Frankowski, Pierre-Cyril [1 ]
Vert, Jean-Philippe [1 ,2 ]
机构
[1] PSL Res Univ, CBIO Ctr Computat Biol, MINES ParisTech, F-75006 Paris, France
[2] Google Res, Brain Team, F-75009 Paris, France
关键词
NETWORK INFERENCE; EXPRESSION; HETEROGENEITY; CIRCUITRY; DYNAMICS;
D O I
10.1093/bioinformatics/btaa576
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Single-cell RNA sequencing (scRNA-seq) offers new possibilities to infer gene regulatory network (GRNs) for biological processes involving a notion of time, such as cell differentiation or cell cycles. It also raises many challenges due to the destructive measurements inherent to the technology. Results: In this work, we propose a new method named GRISLI for de novo GRN inference from scRNA-seq data. GRISLI infers a velocity vector field in the space of scRNA-seq data from profiles of individual cells, and models the dynamics of cell trajectories with a linear ordinary differential equation to reconstruct the underlying GRN with a sparse regression procedure. We show on real data that GRISLI outperforms a recently proposed state-of-the-art method for GRN reconstruction from scRNA-seq data.
引用
收藏
页码:4774 / 4780
页数:7
相关论文
共 50 条
  • [1] Phylogenetic inference from single-cell RNA-seq data
    Liu, Xuan
    Griffiths, Jason I.
    Bishara, Isaac
    Liu, Jiayi
    Bild, Andrea H.
    Chang, Jeffrey T.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] Phylogenetic inference from single-cell RNA-seq data
    Xuan Liu
    Jason I. Griffiths
    Isaac Bishara
    Jiayi Liu
    Andrea H. Bild
    Jeffrey T. Chang
    Scientific Reports, 13
  • [3] Bayesian inference of gene expression states from single-cell RNA-seq data
    Breda, Jeremie
    Zavolan, Mihaela
    van Nimwegen, Erik
    NATURE BIOTECHNOLOGY, 2021, 39 (08) : 1008 - +
  • [4] Bayesian inference of gene expression states from single-cell RNA-seq data
    Jérémie Breda
    Mihaela Zavolan
    Erik van Nimwegen
    Nature Biotechnology, 2021, 39 : 1008 - 1016
  • [5] Latent periodic process inference from single-cell RNA-seq data
    Liang, Shaoheng
    Wang, Fang
    Han, Jincheng
    Chen, Ken
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [6] Latent periodic process inference from single-cell RNA-seq data
    Shaoheng Liang
    Fang Wang
    Jincheng Han
    Ken Chen
    Nature Communications, 11
  • [7] Inference of high-resolution trajectories in single-cell RNA-seq data by using RNA velocity
    Zhang, Ziqi
    Zhang, Xiuwei
    CELL REPORTS METHODS, 2021, 1 (06):
  • [8] scphaser: haplotype inference using single-cell RNA-seq data
    Edsgard, Daniel
    Reinius, Bjorn
    Sandberg, Rickard
    BIOINFORMATICS, 2016, 32 (19) : 3038 - 3040
  • [9] scShaper: an ensemble method for fast and accurate linear trajectory inference from single-cell RNA-seq data
    Smolander, Johannes
    Junttila, Sini
    Venalainen, Mikko S.
    Elo, Laura L.
    BIOINFORMATICS, 2022, 38 (05) : 1328 - 1335
  • [10] Variational Inference in Probabilistic Single-cell RNA-seq Models
    Ferreira, Pedro F.
    Carvalho, Alexandra M.
    Vinga, Susana
    COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, CIBB 2018, 2020, 11925 : 11 - 18