Mathematical Modeling of Arborescent Polyisobutylene Production in Batch Reactors

被引:14
|
作者
Zhao, Yutian R. [1 ]
McAuley, Kimberley B. [1 ]
Puskas, Judit E. [2 ]
Dos Santos, Lucas M. [2 ]
Alvarez, Alejandra [3 ]
机构
[1] Queens Univ, Dept Chem Engn, Kingston, ON K7L 3N6, Canada
[2] Univ Akron, Dept Chem Engn, Akron, OH 44325 USA
[3] Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA
基金
美国国家科学基金会; 美国国家卫生研究院; 加拿大自然科学与工程研究理事会;
关键词
carbocationic polymerizations; hyperbranched; mathematical models; molecular weight distributions; polyisobutylene; SELF-CONDENSING VINYL; MOLECULAR-WEIGHT DISTRIBUTION; LIVING CARBOCATIONIC POLYMERIZATIONS; FIND BRANCHING ARCHITECTURES; PROPAGATION RATE CONSTANTS; HYPERBRANCHED POLYMERS; RADICAL POLYMERIZATIONS; KINETIC SIMULATION; SOLVENT POLARITY; COPOLYMERIZATION;
D O I
10.1002/mats.201200058
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A novel model describes copolymerization of isobutylene and inimer (initiator-monomer) via living carbocationic polymerization. Six different propagation rate constants and two types of equilibrium reactions are considered. Simplifying assumptions are made to enable implementation in PREDICI, so that the molecular weight distribution (MWD) could be predicted for molecules with different branching levels. Four apparent rate constants were estimated from experimental data with <5 branches per molecule. Model predictions provide a good fit to data, and simulation results show that polymers with high-branching levels and 15 inimer units contribute significantly to the MWD, even though their concentrations are very low.
引用
收藏
页码:155 / 173
页数:19
相关论文
共 50 条
  • [31] MATHEMATICAL MODELING OF FLOW REACTORS.
    Fedorov, A.Ya.
    Fedyaev, V.I.
    Kholpanov, L.P.
    Theoretical Foundations of Chemical Engineering, 1984, 18 (05) : 407 - 414
  • [32] Mathematical modeling of the depolymerization of polyamide mixtures - Part I: Kinetic mechanism and parametric studies in batch reactors
    Kalfas, GA
    POLYMER REACTION ENGINEERING, 1998, 6 (01): : 41 - +
  • [33] MATHEMATICAL-MODELING OF ELECTROCHEMICAL REACTORS
    KHEIFETS, LI
    GOLDBERG, AB
    SOVIET ELECTROCHEMISTRY, 1989, 25 (01): : 1 - 25
  • [34] Modeling Crosslinking Polymerization in Batch and Continuous Reactors
    Kryven, Ivan
    Berkenbos, Arjen
    Melo, Priamo
    Kim, Dong-Min
    Iedema, Piet D.
    MACROMOLECULAR REACTION ENGINEERING, 2013, 7 (05) : 205 - 220
  • [35] Modeling and optimization of biological sequential batch reactors
    Fuentes, Mauren
    Iribarren, Oscar
    Mussati, Miguel
    Scenna, Nicolas
    Aguirre, Pio
    20TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2010, 28 : 295 - 300
  • [36] System Dynamics for sequencing batch reactors modeling
    Canales, Fausto Alfredo
    Bulhoes Mendes, Carlos Andre
    REVISTA ELETRONICA EM GESTAO EDUCACAO E TECNOLOGIA AMBIENTAL, 2014, 18 (03): : 1207 - 1222
  • [37] MATHEMATICAL-MODELING OF ANNULAR REACTORS
    DAVIS, ME
    WATSON, LT
    CHEMICAL ENGINEERING JOURNAL AND THE BIOCHEMICAL ENGINEERING JOURNAL, 1986, 33 (03): : 133 - 142
  • [38] Production scheduling of batch reactors with combinatorial optimization
    Eguchi, Hajime
    KAGAKU KOGAKU RONBUNSHU, 2006, 32 (06) : 500 - 506
  • [39] MATHEMATICAL-MODEL OF PARTICLE FRAGMENTATION IN BATCH AND CONTINUOUS REACTORS
    PENKOV, NV
    FLISYUK, OM
    JOURNAL OF APPLIED CHEMISTRY OF THE USSR, 1985, 58 (05): : 1063 - 1065
  • [40] MATHEMATICAL MODEL OF PARTICLE FRAGMENTATION IN BATCH AND CONTINUOUS REACTORS.
    Pen'kov, N.V.
    Flisyuk, O.M.
    1600, (58):