Hyperspectral Image Classification Algorithm Based on Principal Component Texture Feature Deep Learning

被引:0
|
作者
Xu Yifang [1 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun 130011, Peoples R China
关键词
Main Ingredient; Texture Feature; Deep Learning; Image; Classification Algorithm;
D O I
10.1166/jmihi.2020.3133
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hyperspectral image classification refers to a key difficulty on the domain of remote sensing image processing. Feature learning is the basis of hyperspectral image classification problems. In addition, how to jointly use the space spectrum information is Also an important issue in hyperspectral image classification. Recent ages have seen that as further exploration is developing, the method of hyperspectral image cauterization according to deep learning has been rapidly developed. However, existing deep networks often only consider reconstruction performance while ignoring the task itself. In addition, for improving preciseness of classification, most categorization methods use the fixed-size neighborhood of per hyperspectral pixel as the object of feature extraction, ignoring the identification and difference between the neighborhood pixel and the current pixel. On the basis of exploration above, our research group put forward with an image classification algorithm based on principal component texture feature deep learning, and achieved good results.
引用
收藏
页码:2027 / 2031
页数:5
相关论文
共 50 条
  • [31] Spectral and Multi-spatial-feature based deep learning for hyperspectral remote sensing image classification
    Chen, Chen
    Zhang, JingJing
    Li, Teng
    Yan, Qing
    Xun, LiNa
    PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON REAL-TIME COMPUTING AND ROBOTICS (IEEE RCAR), 2018, : 421 - 426
  • [32] ClusterCNN: Clustering-Based Feature Learning for Hyperspectral Image Classification
    Yao, Wei
    Lian, Cheng
    Bruzzone, Lorenzo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (11) : 1991 - 1995
  • [33] CROSS-SCENE HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON FEATURE LEARNING
    Wang, Aili
    Liu, Chengyang
    Zhou, Huaming
    Song, Yingluo
    Wu, Haibin
    Iwahori, Yuji
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3568 - 3571
  • [34] Classification of Hyperspectral Data Based on Principal Component Analysis
    Yi, Baolin
    Li, Weiwei
    Du, Jian
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2012, 15 (09): : 3771 - 3777
  • [35] Information-theoretic feature selection with segmentation-based folded principal component analysis (PCA) for hyperspectral image classification
    Uddin, Md. Palash
    Mamun, Md. Al
    Afjal, Masud Ibn
    Hossain, Md. Ali
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (01) : 286 - 321
  • [36] Deep Multiview Learning for Hyperspectral Image Classification
    Liu, Bing
    Yu, Anzhu
    Yu, Xuchu
    Wang, Ruirui
    Gao, Kuiliang
    Guo, Wenyue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7758 - 7772
  • [37] Deep Learning for Hyperspectral Image Classification: An Overview
    Li, Shutao
    Song, Weiwei
    Fang, Leyuan
    Chen, Yushi
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09): : 6690 - 6709
  • [38] Deep Learning Ensemble for Hyperspectral Image Classification
    Chen, Yushi
    Wang, Ying
    Gu, Yanfeng
    He, Xin
    Ghamisi, Pedram
    Jia, Xiuping
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (06) : 1882 - 1897
  • [39] Deep transfer learning for Hyperspectral Image classification
    Lin, Jianzhe
    Ward, Rabab
    Wang, Z. Jane
    2018 IEEE 20TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2018,
  • [40] Hyperspectral Image Classification With Deep Learning Models
    Yang, Xiaofei
    Ye, Yunming
    Li, Xutao
    Lau, Raymond Y. K.
    Zhang, Xiaofeng
    Huang, Xiaohui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09): : 5408 - 5423