Comparison of Iron Oxide Nanoparticles in Photothermia and Magnetic Hyperthermia: Effects of Clustering and Silica Encapsulation on Nanoparticles' Heating Yield

被引:54
|
作者
Nemec, Sebastjan [1 ,2 ]
Kralj, Slavko [1 ,2 ]
Wilhelm, Claire [3 ,4 ]
Abou-Hassan, Ali [5 ]
Rols, Marie-Pierre [6 ]
Kolosnjaj-Tabi, Jelena [6 ]
机构
[1] Jozef Stefan Inst, Dept Mat Synth, Jamova Cesta 39, Ljubljana 1000, Slovenia
[2] Univ Ljubljana, Fac Pharm, Askerceva Cesta 7, Ljubljana 1000, Slovenia
[3] CNRS, UMR 7057, Lab Matiere & Syst Complexes MSC, Batiment Condorcet, F-75205 Paris, France
[4] Univ Paris Diderot, Batiment Condorcet, F-75205 Paris, France
[5] Sorbonne Univ, CNRS, UMR 8234, PHys Chim Electrolytes & Nanosyst InterfaciauX PH, F-75005 Paris, France
[6] Inst Pharmacol & Struct Biol, 205 Route Narbonne, F-31400 Toulouse, France
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 20期
关键词
superparamagnetic iron oxide nanoparticles; silica-coated magnetic nanoparticles clusters; hyperthermia; photothermal treatment; encapsulation; CANCER-THERAPY; ENHANCEMENT; DISSIPATION; AGENTS; MRI;
D O I
10.3390/app10207322
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application Superparamagnetic iron oxide nanoparticles (SPIONs) have a recognized potential for magnetic hyperthermia, and they are also being increasingly proposed as agents for photothermal treatment (photothermia), a biomedical modality where nanoparticles are excited by light to generate local hyperthermia. While it is known that endosomal internalization of SPIONs negatively affects magnetic hyperthermia, photothermia is not decreased. In an attempt to mimic nanoparticles clustering in endosomes, we herein investigate the effects of silica encapsulation and SPION clustering on both magnetic hyperthermia and photothermia. Photothermal therapy is gathering momentum. In order to assess the effects of the encapsulation of individual or clustered superparamagnetic iron oxide nanoparticles (SPIONs) on nanoparticle light-to-heat conversion, we designed and tested individual and clustered SPIONs encapsulated within a silica shell. Our study compared both photothermia and magnetic hyperthermia, and it involved individual SPIONs as well as silica-encapsulated individual and clustered SPIONs. While, as expected, SPION clustering reduced heat generation in magnetic hyperthermia, the silica shell improved SPION heating in photothermia.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Intensive Analysis of Core-Shell Silica-Coated Iron-Oxide Nanoparticles for Magnetic Hyperthermia
    Iqbal, Yousaf
    Bae, Hongsub
    Rhee, Ilsu
    Hong, Sungwook
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (11) : 11862 - 11867
  • [42] Multifunctional iron and iron oxide nanoparticles in silica
    Simkiene, Irena
    Treideris, Marius
    Niaura, Gediminas
    Szymczak, Ritta
    Aleshkevych, Pavlo
    Reza, Alfonsas
    Kasalynas, Irmantas
    Bukauskas, Virginijus
    Babonas, Gintautas J.
    MATERIALS CHEMISTRY AND PHYSICS, 2011, 130 (03) : 1026 - 1032
  • [43] Evaluating magnetic and thermal effects of various Polymerylated magnetic iron oxide nanoparticles for combined chemo-hyperthermia
    El-Boubbou, Kheireddine
    Lemine, O. M.
    Ali, Rizwan
    Huwaizi, Sarah M.
    Al-Humaid, Sulaiman
    AlKushi, Abdulmohsen
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (12) : 5489 - 5504
  • [44] Iron(0) nanoparticles for application in magnetic hyperthermia
    Meffre, A.
    Mehdaoui, B.
    Fuks, G.
    Lacroix, L. M.
    Lachaize, S.
    Carrey, J.
    Nayral, C.
    Delpech, F.
    Gougeon, M.
    Respaud, M.
    Chaudret, B.
    BULLETIN DU CANCER, 2010, 97 : S57 - S57
  • [45] Magnetic Hyperthermia Using Iron Oxides Nanoparticles
    Xu Huang-Tao
    Ren Wei
    Pan Yong-Xin
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2019, 46 (04) : 369 - 378
  • [46] Chitosan-Functionalized Lithium Iron Oxide Nanoparticles for Magnetic Hyperthermia Applications
    Pandhare, Amol B.
    Mulik, Swapnajit V.
    Malavekar, Dhanaji B.
    Kim, Jin H.
    Khot, Vishwajeet. M.
    Kumar, Pawan
    Sutar, Santosh S.
    Dongale, Tukaram D.
    Patil, Rajendra P.
    Delekar, Sagar D.
    LANGMUIR, 2024, 40 (49) : 25902 - 25918
  • [47] Simulation and experimental studies on magnetic hyperthermia with use of superparamagnetic iron oxide nanoparticles
    Murase K.
    Oonoki J.
    Takata H.
    Song R.
    Angraini A.
    Ausanai P.
    Matsushita T.
    Radiological Physics and Technology, 2011, 4 (2) : 194 - 202
  • [48] Carboxylic acid-stabilised iron oxide nanoparticles for use in magnetic hyperthermia
    Thomas, Luanne A.
    Dekker, Linda
    Kallumadil, Mathew
    Southern, Paul
    Wilson, Michael
    Nair, Sean P.
    Pankhurst, Quentin A.
    Parkin, Ivan P.
    JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (36) : 6529 - 6535
  • [49] Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia
    Salunkhe, Ashwini B.
    Khot, Vishwajeet M.
    Ruso, Juan M.
    Patil, S. I.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 419 : 533 - 542
  • [50] Manganese Iron Oxide Nanoparticles for Magnetic Hyperthermia, Antibacterial and ROS Generation Performance
    Sagar A. Patil
    Tanjila C. Gavandi
    Maithili V. Londhe
    Ashwini B. Salunkhe
    Ashwini K. Jadhav
    Vishwajeet M. Khot
    Journal of Cluster Science, 2024, 35 : 1405 - 1415