Comparison of Iron Oxide Nanoparticles in Photothermia and Magnetic Hyperthermia: Effects of Clustering and Silica Encapsulation on Nanoparticles' Heating Yield

被引:54
|
作者
Nemec, Sebastjan [1 ,2 ]
Kralj, Slavko [1 ,2 ]
Wilhelm, Claire [3 ,4 ]
Abou-Hassan, Ali [5 ]
Rols, Marie-Pierre [6 ]
Kolosnjaj-Tabi, Jelena [6 ]
机构
[1] Jozef Stefan Inst, Dept Mat Synth, Jamova Cesta 39, Ljubljana 1000, Slovenia
[2] Univ Ljubljana, Fac Pharm, Askerceva Cesta 7, Ljubljana 1000, Slovenia
[3] CNRS, UMR 7057, Lab Matiere & Syst Complexes MSC, Batiment Condorcet, F-75205 Paris, France
[4] Univ Paris Diderot, Batiment Condorcet, F-75205 Paris, France
[5] Sorbonne Univ, CNRS, UMR 8234, PHys Chim Electrolytes & Nanosyst InterfaciauX PH, F-75005 Paris, France
[6] Inst Pharmacol & Struct Biol, 205 Route Narbonne, F-31400 Toulouse, France
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 20期
关键词
superparamagnetic iron oxide nanoparticles; silica-coated magnetic nanoparticles clusters; hyperthermia; photothermal treatment; encapsulation; CANCER-THERAPY; ENHANCEMENT; DISSIPATION; AGENTS; MRI;
D O I
10.3390/app10207322
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application Superparamagnetic iron oxide nanoparticles (SPIONs) have a recognized potential for magnetic hyperthermia, and they are also being increasingly proposed as agents for photothermal treatment (photothermia), a biomedical modality where nanoparticles are excited by light to generate local hyperthermia. While it is known that endosomal internalization of SPIONs negatively affects magnetic hyperthermia, photothermia is not decreased. In an attempt to mimic nanoparticles clustering in endosomes, we herein investigate the effects of silica encapsulation and SPION clustering on both magnetic hyperthermia and photothermia. Photothermal therapy is gathering momentum. In order to assess the effects of the encapsulation of individual or clustered superparamagnetic iron oxide nanoparticles (SPIONs) on nanoparticle light-to-heat conversion, we designed and tested individual and clustered SPIONs encapsulated within a silica shell. Our study compared both photothermia and magnetic hyperthermia, and it involved individual SPIONs as well as silica-encapsulated individual and clustered SPIONs. While, as expected, SPION clustering reduced heat generation in magnetic hyperthermia, the silica shell improved SPION heating in photothermia.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Assisted Synthesis of Coated Iron Oxide Nanoparticles for Magnetic Hyperthermia
    Ferreira, Liliana P.
    Reis, Cesar P.
    Robalo, Tiago T.
    Jorge, M. E. Melo
    Ferreira, Paula
    Goncalves, Joana
    Hajalilou, Abdollah
    Cruz, Maria Margarida
    NANOMATERIALS, 2022, 12 (11)
  • [22] Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles
    Laurent, Sophie
    Dutz, Silvio
    Haefeli, Urs O.
    Mahmoudi, Morteza
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2011, 166 (1-2) : 8 - 23
  • [23] Polymer Encapsulation of Magnetic Iron Oxide Nanoparticles for Biomedical Applications
    Eissa, Mohamed M.
    JOURNAL OF COLLOID SCIENCE AND BIOTECHNOLOGY, 2014, 3 (03) : 201 - 226
  • [24] Defects or no defects? Or how to design 20-25 nm spherical iron oxide nanoparticles to harness both magnetic hyperthermia and photothermia
    Freis, Barbara
    Kiefer, Celine
    Ramirez, Maria de los Angeles
    Harlepp, Sebastien
    Mertz, Damien
    Pichon, Benoit
    Iacovita, Cristian
    Laurent, Sophie
    Begin, Sylvie
    NANOSCALE, 2024, 16 (44) : 20542 - 20555
  • [25] Energy Transfer from Magnetic Iron Oxide Nanoparticles: Implications for Magnetic Hyperthermia
    Tabacchi, Gloria
    Armenia, Ilaria
    Bernardini, Giovanni
    Masciocchi, Norberto
    Guagliardi, Antonietta
    Fois, Ettore
    ACS APPLIED NANO MATERIALS, 2023, 6 (14) : 12914 - 12921
  • [26] Magnetic Heating of Iron Oxide Nanoparticles and Magnetic Micelles for Cancer Therapy
    Glover, Amanda L.
    Bennett, James B.
    Pritchett, Jeremy S.
    Nikles, Sarah M.
    Nikles, David E.
    Nikles, Jacqueline A.
    Brazel, Christopher S.
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (01) : 231 - 235
  • [27] Iron Oxide Based Nanoparticles for Magnetic Hyperthermia Strategies in Biological Applications
    Pineiro, Yolanda
    Vargas, Zulema
    Rivas, Jose
    Arturo Lopez-Quintela, Manuel
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2015, (27) : 4495 - 4509
  • [28] Yttrium-Doped Iron Oxide Nanoparticles for Magnetic Hyperthermia Applications
    Kowalik, Przemyslaw
    Mikulski, Jakub
    Borodziuk, Anna
    Duda, Magdalena
    Kaminska, Izabela
    Zajdel, Karolina
    Rybusinski, Jaroslaw
    Szczytko, Jacek
    Wojciechowski, Tomasz
    Sobczak, Kamil
    Minikayev, Roman
    Kulpa-Greszta, Magdalena
    Pazik, Robert
    Grzaczkowska, Paulina
    Fronc, Krzysztof
    Lapinski, Mariusz
    Frontczak-Baniewicz, Malgorzata
    Sikora, Bozena
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (12): : 6871 - 6883
  • [29] The influence of magnetic and physiological behaviour on the effectiveness of iron oxide nanoparticles for hyperthermia
    Dennis, C. L.
    Jackson, A. J.
    Borchers, J. A.
    Ivkov, R.
    Foreman, A. R.
    Hoopes, P. J.
    Strawbridge, R.
    Pierce, Z.
    Goerntiz, E.
    Lau, J. W.
    Gruettner, C.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (13)
  • [30] Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia
    Blanco-Andujar, Cristina
    Walter, Aurelie
    Cotin, Geoffrey
    Bordeianu, Catalina
    Mertz, Damien
    Felder-Flesch, Delphine
    Begin-Colin, Sylvie
    NANOMEDICINE, 2016, 11 (14) : 1889 - 1910