Computational Intelligence on Short-Term Load Forecasting: A Methodological Overview

被引:82
|
作者
Fallah, Seyedeh Narjes
Ganjkhani, Mehdi [1 ]
Shamshirband, Shahaboddin [2 ,3 ]
Chau, Kwok-wing [4 ]
机构
[1] Sharif Univ Technol, Dept Elect Engn, POB 11365-11155, Tehran, Iran
[2] Ton Duc Thang Univ, Dept Management Sci & Technol Dev, Ho Chi Minh City, Vietnam
[3] Ton Duc Thang Univ, Fac Informat Technol, Ho Chi Minh City, Vietnam
[4] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Peoples R China
关键词
short-term load forecasting; demand-side management; pattern similarity; hierarchical short-term load forecasting; feature selection; weather station selection; PARTICLE SWARM OPTIMIZATION; FEATURE-SELECTION; FEATURE-EXTRACTION; MEMETIC ALGORITHM; ELECTRICITY LOAD; NEURAL NETWORKS; VECTOR; MODEL; REGRESSION; IDENTIFICATION;
D O I
10.3390/en12030393
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electricity demand forecasting has been a real challenge for power system scheduling in different levels of energy sectors. Various computational intelligence techniques and methodologies have been employed in the electricity market for short-term load forecasting, although scant evidence is available about the feasibility of these methods considering the type of data and other potential factors. This work introduces several scientific, technical rationales behind short-term load forecasting methodologies based on works of previous researchers in the energy field. Fundamental benefits and drawbacks of these methods are discussed to represent the efficiency of each approach in various circumstances. Finally, a hybrid strategy is proposed.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Regional short-term load forecasting for Slovenia
    Kunstelj, Stefan
    Rejc, Matej
    Pantos, Milos
    ELEKTROTEHNISKI VESTNIK-ELECTROCHEMICAL REVIEW, 2014, 81 (04): : 222 - 228
  • [42] Intelligent short-term load forecasting in Turkey
    Topalli, Ayca Kumluca
    Erkmen, Ismet
    Topalli, Ihsan
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2006, 28 (07) : 437 - 447
  • [43] Stacking for Probabilistic Short-Term Load Forecasting
    Dudek, Grzegorz
    COMPUTATIONAL SCIENCE, ICCS 2024, PT II, 2024, 14833 : 3 - 18
  • [44] Short-Term Load Forecasting Methods: A Review
    Srivastava, A. K.
    Pandey, Ajay Shekhar
    Singh, Devender
    2016 INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ELECTRICAL ELECTRONICS & SUSTAINABLE ENERGY SYSTEMS (ICETEESES), 2016, : 130 - 138
  • [45] Regional short-term load forecasting for Slovenia
    Kratkoročno napovedovanje porabe električne energije po regijah za območje Slovenije
    Kunstelj, Štefan, 1600, Electrotechnical Society of Slovenia (81):
  • [46] SHORT-TERM ON-LINE LOAD FORECASTING
    SACHDEV, MS
    IBRAHIM, SA
    IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1972, PA91 (06): : 2257 - &
  • [47] Short-term load forecasting in smart grids using artificial intelligence methods: A survey
    Salehimehr, Sirus
    Taheri, Behrooz
    Sedighizadeh, Mostafa
    JOURNAL OF ENGINEERING-JOE, 2022, 12 (1133-1142): : 1133 - 1142
  • [48] Short-Term Electricity Load Forecasting Using a New Intelligence-Based Application
    Khan, Salahuddin
    SUSTAINABILITY, 2023, 15 (16)
  • [49] Tool for short-term load forecasting in transmission systems based on artificial intelligence techniques
    Guirelli, CR
    Jardini, JA
    Magrini, LC
    Yasuoka, J
    Campos, AC
    Bastos, M
    2004 IEEE/PES TRANSMISSION & DISTRIBUTION CONFERENCE & EXPOSITION: LATIN AMERICA, 2004, : 243 - 248
  • [50] Short Term Load Forecasting using Artificial Intelligence
    Luthuli, Qiniso W.
    Folly, Komla A.
    2016 IEEE PES POWERAFRICA CONFERENCE, 2016, : 129 - 133