Computational Intelligence on Short-Term Load Forecasting: A Methodological Overview

被引:82
|
作者
Fallah, Seyedeh Narjes
Ganjkhani, Mehdi [1 ]
Shamshirband, Shahaboddin [2 ,3 ]
Chau, Kwok-wing [4 ]
机构
[1] Sharif Univ Technol, Dept Elect Engn, POB 11365-11155, Tehran, Iran
[2] Ton Duc Thang Univ, Dept Management Sci & Technol Dev, Ho Chi Minh City, Vietnam
[3] Ton Duc Thang Univ, Fac Informat Technol, Ho Chi Minh City, Vietnam
[4] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Peoples R China
关键词
short-term load forecasting; demand-side management; pattern similarity; hierarchical short-term load forecasting; feature selection; weather station selection; PARTICLE SWARM OPTIMIZATION; FEATURE-SELECTION; FEATURE-EXTRACTION; MEMETIC ALGORITHM; ELECTRICITY LOAD; NEURAL NETWORKS; VECTOR; MODEL; REGRESSION; IDENTIFICATION;
D O I
10.3390/en12030393
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electricity demand forecasting has been a real challenge for power system scheduling in different levels of energy sectors. Various computational intelligence techniques and methodologies have been employed in the electricity market for short-term load forecasting, although scant evidence is available about the feasibility of these methods considering the type of data and other potential factors. This work introduces several scientific, technical rationales behind short-term load forecasting methodologies based on works of previous researchers in the energy field. Fundamental benefits and drawbacks of these methods are discussed to represent the efficiency of each approach in various circumstances. Finally, a hybrid strategy is proposed.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] The Delicate Analysis of Short-Term Load Forecasting
    Song, Changwei
    Zheng, Yuan
    2017 2ND ASIA CONFERENCE ON POWER AND ELECTRICAL ENGINEERING (ACPEE 2017), 2017, 199
  • [22] Application of GMDH to Short-term Load Forecasting
    Xu, Hongya
    Dong, Yao
    Wu, Jie
    Zhao, Weigang
    2010 INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT (CCCM2010), VOL III, 2010, : 338 - 341
  • [23] Short-Term Load Forecasting on Individual Consumers
    Jales Melo, Joao Victor
    Soares Lira, George Rossany
    Costa, Edson Guedes
    Leite Neto, Antonio F.
    Oliveira, Iago B.
    ENERGIES, 2022, 15 (16)
  • [24] Power system short-term load forecasting
    Wang, Jingyao
    PROCEEDINGS OF THE 2017 5TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND COMPUTING TECHNOLOGY (ICMMCT 2017), 2017, 126 : 250 - 253
  • [25] SHORT-TERM LOAD FORECASTING BY MACHINE LEARNING
    Hsu, Chung-Chian
    Chen, Xiang-Ting
    Chen, Yu-Sheng
    Chang, Arthur
    2020 INTERNATIONAL SYMPOSIUM ON COMMUNITY-CENTRIC SYSTEMS (CCS), 2020,
  • [26] COMPARISON OF METHODS FOR SHORT-TERM LOAD FORECASTING
    DEISTLER, M
    FRAISSLER, W
    PETRITSCH, G
    SCHERRER, W
    ARCHIV FUR ELEKTROTECHNIK, 1988, 71 (06): : 389 - 397
  • [27] Comparison of Short-Term Load Forecasting Techniques
    Sethi, Rajat
    Kleissl, Jan
    2020 IEEE CONFERENCE ON TECHNOLOGIES FOR SUSTAINABILITY (SUSTECH), 2020,
  • [28] Application of GMDH to short-term load forecasting
    School of Physical Science and Technology, Lanzhou University, Lanzhou, China
    不详
    Adv. Intell. Soft Comput., (27-32):
  • [29] AN ACCURATE MODEL FOR SHORT-TERM LOAD FORECASTING
    ABOUHUSSIEN, MS
    KANDIL, MS
    TANTAWY, MA
    FARGHAL, SA
    IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1981, 100 (09): : 4158 - 4165
  • [30] Short-term load forecasting of power system
    Xu, Xiaobin
    MATERIALS SCIENCE, ENERGY TECHNOLOGY, AND POWER ENGINEERING I, 2017, 1839