Coupling carbon nanotube mechanics to a superconducting circuit

被引:52
|
作者
Schneider, B. H. [1 ]
Etaki, S. [1 ]
van der Zant, H. S. J. [1 ]
Steele, G. A. [1 ]
机构
[1] Delft Univ Technol, Kavli Inst NanoSci, NL-2600 GA Delft, Netherlands
来源
SCIENTIFIC REPORTS | 2012年 / 2卷
关键词
NANOMECHANICAL MOTION; QUANTUM; INTERFERENCE; RESONATOR;
D O I
10.1038/srep00599
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The quantum behaviour of mechanical resonators is a new and emerging field driven by recent experiments reaching the quantum ground state. The high frequency, small mass, and large quality-factor of carbon nanotube resonators make them attractive for quantum nanomechanical applications. A common element in experiments achieving the resonator ground state is a second quantum system, such as coherent photons or a superconducting device, coupled to the resonators motion. For nanotubes, however, this is a challenge due to their small size. Here, we couple a carbon nanoelectromechanical (NEMS) device to a superconducting circuit. Suspended carbon nanotubes act as both superconducting junctions and moving elements in a Superconducting Quantum Interference Device (SQUID). We observe a strong modulation of the flux through the SQUID from displacements of the nanotube. Incorporating this SQUID into superconducting resonators and qubits should enable the detection and manipulation of nanotube mechanical quantum states at the single-phonon level.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Highly aligned carbon nanotube forests coated by superconducting NbC
    G.F. Zou
    H.M. Luo
    S. Baily
    Y.Y. Zhang
    N.F. Haberkorn
    J. Xiong
    E. Bauer
    T.M. McCleskey
    A.K. Burrell
    L. Civale
    Y.T. Zhu
    J.L. MacManus-Driscoll
    Q.X. Jia
    Nature Communications, 2
  • [42] Towards carbon nanotube growth into superconducting microwave resonator geometries
    Blien, S.
    Goetz, K. J. G.
    Stiller, P. L.
    Mayer, T.
    Huber, T.
    Vavra, O.
    Huettel, A. K.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2016, 253 (12): : 2385 - 2390
  • [43] Length-Dependent Mechanics of Carbon-Nanotube Networks
    Rahatekar, Sameer S.
    Koziol, Krzysztof K.
    Kline, Steven R.
    Hobbie, Erik K.
    Gilman, Jeffrey W.
    Windle, Alan H.
    ADVANCED MATERIALS, 2009, 21 (08) : 874 - +
  • [44] Mechanics of Deformation of Multi Walled Carbon Nanotube Reinforced Composites
    Joshi, Preeti
    Upadhyay, S. H.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2014, 11 (12) : 2603 - 2610
  • [45] Molecular mechanics methods for individual carbon nanotubes and nanotube assemblies
    Eberhardt, Oliver
    Wallmersperger, Thomas
    BEHAVIOR AND MECHANICS OF MULTIFUNCTIONAL MATERIALS AND COMPOSITES 2015, 2015, 9432
  • [46] Nonlinear structural mechanics based modeling of carbon nanotube deformation
    Pantano, A
    Boyce, MC
    Parks, DM
    PHYSICAL REVIEW LETTERS, 2003, 91 (14)
  • [47] Contact mechanics and thermal conductance of carbon nanotube array interfaces
    Cola, Baratunde A.
    Xu, Jun
    Fisher, Timothy S.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (15-16) : 3490 - 3503
  • [48] Molecular mechanics of binding in carbon-nanotube-polymer composites
    Lordi, V
    Yao, N
    JOURNAL OF MATERIALS RESEARCH, 2000, 15 (12) : 2770 - 2779
  • [49] Molecular mechanics investigations of carbon nanotube and graphene sheet interaction
    Seydou, Mahamadou
    Marsaudon, Sophie
    Buchoux, Julien
    Aime, Jean Pierre
    Bonnot, Anne Marie
    PHYSICAL REVIEW B, 2009, 80 (24)
  • [50] Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites
    Tam, Lik-ho
    Wu, Chao
    NANOMATERIALS, 2017, 7 (10)