Coupling carbon nanotube mechanics to a superconducting circuit

被引:52
|
作者
Schneider, B. H. [1 ]
Etaki, S. [1 ]
van der Zant, H. S. J. [1 ]
Steele, G. A. [1 ]
机构
[1] Delft Univ Technol, Kavli Inst NanoSci, NL-2600 GA Delft, Netherlands
来源
SCIENTIFIC REPORTS | 2012年 / 2卷
关键词
NANOMECHANICAL MOTION; QUANTUM; INTERFERENCE; RESONATOR;
D O I
10.1038/srep00599
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The quantum behaviour of mechanical resonators is a new and emerging field driven by recent experiments reaching the quantum ground state. The high frequency, small mass, and large quality-factor of carbon nanotube resonators make them attractive for quantum nanomechanical applications. A common element in experiments achieving the resonator ground state is a second quantum system, such as coherent photons or a superconducting device, coupled to the resonators motion. For nanotubes, however, this is a challenge due to their small size. Here, we couple a carbon nanoelectromechanical (NEMS) device to a superconducting circuit. Suspended carbon nanotubes act as both superconducting junctions and moving elements in a Superconducting Quantum Interference Device (SQUID). We observe a strong modulation of the flux through the SQUID from displacements of the nanotube. Incorporating this SQUID into superconducting resonators and qubits should enable the detection and manipulation of nanotube mechanical quantum states at the single-phonon level.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Optimized Field/Circuit Coupling for the Simulation of Quenches in Superconducting Magnets
    Garcia I.C.
    Schöps S.
    Maciejewski M.
    Bortot L.
    Prioli M.
    Auchmann B.
    Verweij A.
    Garcia, Idoia Cortes (cortes@gsc.tu-darmstadt.de), 2017, Institute of Electrical and Electronics Engineers Inc., United States (02) : 97 - 104
  • [32] Coupling a Superconducting Quantum Circuit to a Phononic Crystal Defect Cavity
    Arrangoiz-Arriola, Patricio
    Wollack, E. Alex
    Pechal, Marek
    Witmer, Jeremy D.
    Hill, Jeff T.
    Safavi-Naeini, Amir H.
    PHYSICAL REVIEW X, 2018, 8 (03):
  • [33] Engineered selection rules for tunable coupling in a superconducting quantum circuit
    Harrabi, K.
    Yoshihara, F.
    Niskanen, A. O.
    Nakamura, Y.
    Tsai, J. S.
    PHYSICAL REVIEW B, 2009, 79 (02):
  • [34] Efficient Carbon Nanotube Galois Field Circuit Design
    Keshavarziana, Peiman
    Navi, Keivan
    IEICE ELECTRONICS EXPRESS, 2009, 6 (09): : 546 - 552
  • [35] Circuit elements in carbon nanotube-polymer composites
    Hsu, WK
    Kotzeva, V
    Watts, PCP
    Chen, GZ
    CARBON, 2004, 42 (8-9) : 1707 - 1712
  • [36] A spiking neuron circuit based on a carbon nanotube transistor
    Chen, C-L
    Kim, K.
    Truong, Q.
    Shen, A.
    Li, Z.
    Chen, Y.
    NANOTECHNOLOGY, 2012, 23 (27)
  • [37] Circuit Design for Carbon Nanotube Field Effect Transistors
    Nan, Haiqing
    Wang, Wei
    Choi, Ken
    2012 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2012, : 351 - 354
  • [38] Carbon nanotube materials for future integrated circuit applications
    Ze, Yumeng
    Liu, Yifan
    Wang, Bo
    Yin, Huimin
    Jin, Chuanhong
    Zhang, Zhiyong
    Materials Today, 2024, 79 : 97 - 111
  • [39] An integrated logic circuit assembled on a single carbon nanotube
    Chen, ZH
    Appenzeller, J
    Lin, YM
    Sippel-Oakley, J
    Rinzler, AG
    Tang, JY
    Wind, SJ
    Solomon, PM
    Avouris, P
    SCIENCE, 2006, 311 (5768) : 1735 - 1735
  • [40] Highly aligned carbon nanotube forests coated by superconducting NbC
    Zou, G. F.
    Luo, H. M.
    Baily, S.
    Zhang, Y. Y.
    Haberkorn, N. F.
    Xiong, J.
    Bauer, E.
    McCleskey, T. M.
    Burrell, A. K.
    Civale, L.
    Zhu, Y. T.
    MacManus-Driscoll, J. L.
    Jia, Q. X.
    NATURE COMMUNICATIONS, 2011, 2