Coupling carbon nanotube mechanics to a superconducting circuit

被引:52
|
作者
Schneider, B. H. [1 ]
Etaki, S. [1 ]
van der Zant, H. S. J. [1 ]
Steele, G. A. [1 ]
机构
[1] Delft Univ Technol, Kavli Inst NanoSci, NL-2600 GA Delft, Netherlands
来源
SCIENTIFIC REPORTS | 2012年 / 2卷
关键词
NANOMECHANICAL MOTION; QUANTUM; INTERFERENCE; RESONATOR;
D O I
10.1038/srep00599
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The quantum behaviour of mechanical resonators is a new and emerging field driven by recent experiments reaching the quantum ground state. The high frequency, small mass, and large quality-factor of carbon nanotube resonators make them attractive for quantum nanomechanical applications. A common element in experiments achieving the resonator ground state is a second quantum system, such as coherent photons or a superconducting device, coupled to the resonators motion. For nanotubes, however, this is a challenge due to their small size. Here, we couple a carbon nanoelectromechanical (NEMS) device to a superconducting circuit. Suspended carbon nanotubes act as both superconducting junctions and moving elements in a Superconducting Quantum Interference Device (SQUID). We observe a strong modulation of the flux through the SQUID from displacements of the nanotube. Incorporating this SQUID into superconducting resonators and qubits should enable the detection and manipulation of nanotube mechanical quantum states at the single-phonon level.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Coupling carbon nanotube mechanics to a superconducting circuit
    B. H. Schneider
    S. Etaki
    H. S. J. van der Zant
    G. A. Steele
    Scientific Reports, 2
  • [2] Coupling Mechanics to Charge Transport in Carbon Nanotube Mechanical Resonators
    Lassagne, Benjamin
    Tarakanov, Yury
    Kinaret, Jari
    Garcia-Sanchez, David
    Bachtold, Adrian
    SCIENCE, 2009, 325 (5944) : 1107 - 1110
  • [3] Circuit Quantum Electrodynamics with Carbon-Nanotube-Based Superconducting Quantum Circuits
    Mergenthaler, Matthias
    Nersisyan, Ani
    Patterson, Andrew
    Esposito, Martina
    Baumgartner, Andreas
    Schonenberger, Christian
    Briggs, G. Andrew D.
    Laird, Edward A.
    Leek, Peter J.
    PHYSICAL REVIEW APPLIED, 2021, 15 (06)
  • [4] Delamination Mechanics of Carbon Nanotube Micropillars
    Brown, Josef
    Hajilounezhad, Taher
    Dee, Nicholas T.
    Kim, Sanha
    Hart, A. John
    Maschmann, Matthew R.
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (38) : 35221 - 35227
  • [5] Mechanics and Geometry for Carbon Nanotube Networks and Biomembrane Nanotube Networks
    Yin, Ya Jun
    ISCM II AND EPMESC XII, PTS 1 AND 2, 2010, 1233 : 776 - 781
  • [6] Nanotube mechanics - Recent progress in shell buckling mechanics and quantum electromechanical coupling
    Waters, J. F.
    Guduru, P. R.
    Xu, J. M.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2006, 66 (09) : 1141 - 1150
  • [7] Molecular mechanics modeling of carbon nanotube fracture
    Duan, W. H.
    Wang, Q.
    Liew, K. M.
    He, X. Q.
    CARBON, 2007, 45 (09) : 1769 - 1776
  • [8] Controlling Carbon Nanotube Mechanics with Optical Microcavities
    Zhang, Mian
    Barnard, Arthur
    McEuen, Paul L.
    Lipson, Michal
    2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [9] Carbon nanotube superconducting quantum interference device
    Cleuziou, J. -P.
    Wernsdorfer, W.
    Bouchiat, V.
    Ondarcuhu, T.
    Monthioux, M.
    NATURE NANOTECHNOLOGY, 2006, 1 (01) : 53 - 59
  • [10] Carbon nanotube superconducting quantum interference device
    J.-P. Cleuziou
    W. Wernsdorfer
    V. Bouchiat
    T. Ondarçuhu
    M. Monthioux
    Nature Nanotechnology, 2006, 1 : 53 - 59