A SAS(R) macro for constructing simultaneous confidence intervals for multinomial proportions

被引:31
|
作者
May, WL [1 ]
Johnson, WD [1 ]
机构
[1] LOUISIANA STATE UNIV,MED CTR,DEPT BIOMETRY & GENET,NEW ORLEANS,LA 70112
关键词
categorical data; multinomial distribution; simultaneous interval estimation;
D O I
10.1016/S0169-2607(97)01809-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Quesenberry and Hurst (1964), Goodman (1965) and Fitzpatrick and Scott (1987) proposed simultaneous construction of confidence intervals for multinomial proportions, however, statistical computing packages do not generally give one the option of specifying the type of construction to be used, We have written a SAS macro using PROC IML that takes multinomial cell counts as input and returns simultaneous confidence intervals with the user-specified coverage probability. Two main features of the macro are its ease of use and its flexibility in allowing the user to choose among six methods of constructing confidence intervals for multinomial proportions. Based on simulation May and Johnson (1997) recommended the intervals proposed by Goodman (1965) in most practical applications. (C) 1997 Elsevier Science Inland Ltd.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 50 条
  • [31] Confidence intervals for differences in correlated binary proportions
    Lui, KJ
    [J]. STATISTICS IN MEDICINE, 1998, 17 (17) : 2017 - 2020
  • [32] Confidence intervals for differences in correlated binary proportions
    May, WL
    Johnson, WD
    [J]. STATISTICS IN MEDICINE, 1997, 16 (18) : 2127 - 2136
  • [33] Confidence intervals for proportions - the cinderella of statistical analyses
    Newcombe, R. G.
    [J]. CLINICAL ONCOLOGY, 2008, 20 (01) : 92 - 93
  • [34] Confidence and Credibility Intervals for the Difference of Two Proportions
    Zhang, Hanwen
    Gutierrez Rojas, Hugo Andres
    Cepeda Cuervo, Edilberto
    [J]. REVISTA COLOMBIANA DE ESTADISTICA, 2010, 33 (01): : 63 - 88
  • [35] Small proportions: what to report for confidence intervals?
    Tobi, H
    van den Berg, PB
    de Jong-van den Berg, LTW
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2005, 14 (04) : 239 - 247
  • [36] Coverage Properties Of Optimized Confidence Intervals For Proportions
    Wendell, John P.
    Cox, Sharon P.
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2005, 4 (01) : 43 - 52
  • [37] Likelihood confidence intervals for proportions in finite populations
    Wendell, JP
    Schmee, J
    [J]. AMERICAN STATISTICIAN, 2001, 55 (01): : 55 - 61
  • [38] Constructing confidence intervals for selected parameters
    Zhao, Haibing
    Cui, Xinping
    [J]. BIOMETRICS, 2020, 76 (04) : 1098 - 1108
  • [39] Confidence intervals for multinomial logistic regression in sparse data
    Bull, Shelley B.
    Lewinger, Juan Pablo
    Lee, Sophia S. F.
    [J]. STATISTICS IN MEDICINE, 2007, 26 (04) : 903 - 918
  • [40] Sequential confidence intervals for the number of cells in a multinomial population
    Govindarajulu, Z
    Cho, HA
    [J]. STATISTICS, 2004, 38 (04) : 357 - 370