Large thermal conductivity decrease in point defective Bi2Te3 bulk materials and superlattices

被引:54
|
作者
Termentzidis, Konstantinos [1 ,2 ]
Pokropyvnyy, Oleksiy [2 ]
Woda, Michael [3 ]
Xiong, Shiyun [2 ]
Chumakov, Yuri [2 ,4 ]
Cortona, Pietro [5 ]
Volz, Sebastian [2 ]
机构
[1] Univ Lorraine, CNRS, LEMTA UMR 7563, F-54506 Vandoeuvre Les Nancy, France
[2] Ecole Cent Paris, Lab Energet Mol & Macroscop, UPR CNRS 288, F-92295 Chatenay Malabry, France
[3] Micropelt GmbH, D-06120 Halle, Germany
[4] Moldavian Acad Sci, Inst Appl Phys, MD-2028 Kishinev, Moldova
[5] Ecole Cent Paris, UMR CNRS 8580, Lab Struct Proprietes & Modelisat Solides, F-92295 Chatenay Malabry, France
关键词
MOLECULAR-DYNAMICS; BISMUTH TELLURIDE; THERMOELECTRIC PROPERTIES; PHONON; MERIT; NANOSTRUCTURES; CRYSTAL; FIGURE;
D O I
10.1063/1.4772783
中图分类号
O59 [应用物理学];
学科分类号
摘要
Defective Bi2Te3 structures have been studied with the aim of lowering the thermal conductivity in order to improve the thermoelectric figure of merit. The cross-plane thermal conductivities of structures containing point defects have been computed by means of molecular dynamics techniques, finding a maximum decrease of 70% for a 4% concentration of tellurium atom vacancies. Superlattices with modified stoichiometries have also been considered in order to find the configuration having the lowest thermal conductivity. In this case, a maximum decrease of 70% was also found. These predictions open the way to the design of efficient bulk thermoelectric materials having optimised thermal properties similar to those of superlattices. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772783]
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Theoretical study of electronic structures of Bi2Te3/Sb2Te3 superlattices
    Li, H
    Bilc, D
    Mahanti, SD
    THERMOELECTRIC MATERIALS 2003-RESEARCH AND APPLICATIONS, 2004, 793 : 339 - 344
  • [42] Strain engineering on the thermal conductivity and heat flux of thermoelectric Bi2Te3 nanofilm
    Yu, ChenXi
    Zhang, Gang
    Zhang, Yong-Wei
    Peng, Lian-Mao
    NANO ENERGY, 2015, 17 : 104 - 110
  • [43] Thermal conductivity of Bi2Te3 nanowires: how size affects phonon scattering
    Munoz Rojo, Miguel
    Abad, B.
    Manzano, C. V.
    Torres, P.
    Cartoixa, X.
    Alvarez, F. X.
    Martin Gonzalez, M.
    NANOSCALE, 2017, 9 (20) : 6741 - 6747
  • [44] Thermal conductivity of Bi2Te3:Sn and the effect of codoping by Pb and I atoms
    Zhitinskaya, MK
    Nemov, SA
    Svechnikova, TE
    Luk'yanova, LN
    Konstantinov, PP
    Kutasov, VA
    PHYSICS OF THE SOLID STATE, 2003, 45 (07) : 1251 - 1253
  • [45] Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures
    Rienks, E. D. L.
    Wimmer, S.
    Sanchez-Barriga, J.
    Caha, O.
    Mandal, P. S.
    Ruzicka, J.
    Ney, A.
    Steiner, H.
    Volobuev, V. V.
    Groiss, H.
    Albu, M.
    Kothleitner, G.
    Michalicka, J.
    Khan, S. A.
    Minar, J.
    Ebert, H.
    Bauer, G.
    Freyse, F.
    Varykhalov, A.
    Rader, O.
    Springholz, G.
    NATURE, 2019, 576 (7787) : 423 - +
  • [46] Phonon thermal transport in Bi2Te3/Sb2Te3 monolayer superlattices: a neural network potential study
    Zhang, Pan
    Lyu, Fang
    Jin, Dan
    Zhang, Zhenhua
    Chen, Shiwei
    Liu, Yong
    Wang, Ziyu
    Lu, Zhihong
    Liang, Shiheng
    Xiong, Rui
    NANOSCALE, 2025, 17 (05) : 2718 - 2727
  • [47] Thermal Conductivity Anisotropy in Phonon Transport of Bi2Te3/Bi0.5Sb1.5Te3 Superlattice Film
    Kang, Soo-Young
    Park, No-Won
    Lee, Won-Yong
    Kang, Min-Sung
    Kim, Gil-Sung
    Koo, Sang-Mo
    Koh, Jung-Hyuk
    Lee, Sang-Kwon
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2020, 15 (04) : 463 - 467
  • [48] Electrodeposition of Bi2Te3 and Bi2Te3/reduced GO thin film thermoelectric materials in dimethyl sulphoxide
    Wang, Yani
    Li, Feihui
    Zhao, Jingwei
    Hu, Jiaqi
    Qin, Ruoxuan
    Qiu, Shuang
    Zhang, Hongqing
    TRANSACTIONS OF THE INSTITUTE OF METAL FINISHING, 2024, 102 (04): : 206 - 214
  • [49] Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures
    E. D. L. Rienks
    S. Wimmer
    J. Sánchez-Barriga
    O. Caha
    P. S. Mandal
    J. Růžička
    A. Ney
    H. Steiner
    V. V. Volobuev
    H. Groiss
    M. Albu
    G. Kothleitner
    J. Michalička
    S. A. Khan
    J. Minár
    H. Ebert
    G. Bauer
    F. Freyse
    A. Varykhalov
    O. Rader
    G. Springholz
    Nature, 2019, 576 : 423 - 428
  • [50] Bulk Cyclotron Resonance in the Topological Insulator Bi2Te3
    Kamenskyi, Dmytro L.
    Pronin, Artem, V
    Benia, Hadj M.
    Martovitskii, Victor P.
    Pervakov, Kirill S.
    Selivanov, Yurii G.
    CRYSTALS, 2020, 10 (09): : 1 - 7