Large thermal conductivity decrease in point defective Bi2Te3 bulk materials and superlattices

被引:54
|
作者
Termentzidis, Konstantinos [1 ,2 ]
Pokropyvnyy, Oleksiy [2 ]
Woda, Michael [3 ]
Xiong, Shiyun [2 ]
Chumakov, Yuri [2 ,4 ]
Cortona, Pietro [5 ]
Volz, Sebastian [2 ]
机构
[1] Univ Lorraine, CNRS, LEMTA UMR 7563, F-54506 Vandoeuvre Les Nancy, France
[2] Ecole Cent Paris, Lab Energet Mol & Macroscop, UPR CNRS 288, F-92295 Chatenay Malabry, France
[3] Micropelt GmbH, D-06120 Halle, Germany
[4] Moldavian Acad Sci, Inst Appl Phys, MD-2028 Kishinev, Moldova
[5] Ecole Cent Paris, UMR CNRS 8580, Lab Struct Proprietes & Modelisat Solides, F-92295 Chatenay Malabry, France
关键词
MOLECULAR-DYNAMICS; BISMUTH TELLURIDE; THERMOELECTRIC PROPERTIES; PHONON; MERIT; NANOSTRUCTURES; CRYSTAL; FIGURE;
D O I
10.1063/1.4772783
中图分类号
O59 [应用物理学];
学科分类号
摘要
Defective Bi2Te3 structures have been studied with the aim of lowering the thermal conductivity in order to improve the thermoelectric figure of merit. The cross-plane thermal conductivities of structures containing point defects have been computed by means of molecular dynamics techniques, finding a maximum decrease of 70% for a 4% concentration of tellurium atom vacancies. Superlattices with modified stoichiometries have also been considered in order to find the configuration having the lowest thermal conductivity. In this case, a maximum decrease of 70% was also found. These predictions open the way to the design of efficient bulk thermoelectric materials having optimised thermal properties similar to those of superlattices. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772783]
引用
收藏
页数:7
相关论文
共 50 条
  • [31] ELECTRICAL AND THERMAL PROPERTIES OF BI2TE3
    SATTERTHWAITE, CB
    URE, RW
    PHYSICAL REVIEW, 1957, 108 (05): : 1164 - 1170
  • [32] Intrinsically Low Lattice Thermal Conductivity in Natural Superlattice (Bi2)m(Bi2Te3)n Thermoelectric Materials
    Zhu, Hao
    Zhao, Chenchen
    Nan, Pengfei
    Jiang, Xiao-ming
    Zhao, Jiyin
    Ge, Binghui
    Xiao, Chong
    Xie, Yi
    CHEMISTRY OF MATERIALS, 2021, 33 (04) : 1140 - 1148
  • [33] Fabrication of Bi2Te3 nanowire arrays and thermal conductivity measurement by 3ω-scanning thermal microscopy
    Munoz Rojo, M.
    Grauby, S.
    Rampnoux, J. -M.
    Caballero-Calero, O.
    Martin-Gonzalez, M.
    Dilhaire, S.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (05)
  • [35] Preparation and thermoelectric properties of Bi2Te3 fine-grained bulk materials
    Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China
    Zhang, X. (zhxin@bjut.edu.cn), 1600, Rare Metals Materials and Engineering Press (41):
  • [36] Preparation and Thermoelectric Properties of Bi2Te3 Fine-grained Bulk Materials
    Ma Xuyi
    Zhang Xin
    Lu Qingmei
    Zhang Jiuxing
    RARE METAL MATERIALS AND ENGINEERING, 2012, 41 (06) : 1097 - 1100
  • [37] Investigation of the interdiffusion of Sb and Bi in [Bi2Te3]x[Sb2Te3]y superlattices
    Mortensen, C
    Rostek, R
    Schmid, B
    Johnson, DC
    ICT: 2005 24TH INTERNATIONAL CONFERENCE ON THERMOELECTRICS, 2005, : 261 - 264
  • [38] Reduction in coherent phonon lifetime in Bi2Te3/Sb2Te3 superlattices
    Wang, Yaguo
    Xu, Xianfan
    Venkatasubramanian, Rama
    APPLIED PHYSICS LETTERS, 2008, 93 (11)
  • [39] Thermal conductivity of Bi2Te3: Sn and the effect of codoping by Pb and I atoms
    M. K. Zhitinskaya
    S. A. Nemov
    T. E. Svechnikova
    L. N. Luk’yanova
    P. P. Konstantinov
    V. A. Kutasov
    Physics of the Solid State, 2003, 45 : 1251 - 1253
  • [40] Interplay between Point Defects and Thermal Conductivity of Chemically Synthesized Bi2Te3 Nanocrystals Studied by Positron Annihilation
    He, H. F.
    Li, X. F.
    Chen, Z. Q.
    Zheng, Y.
    Yang, D. W.
    Tang, X. F.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (38): : 22389 - 22394