Unextendible Product Bases and Locally Unconvertible Bound Entangled States

被引:31
|
作者
Bravyi, S. B. [1 ]
机构
[1] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
unextendible product bases; bound entanglement; LOCC;
D O I
10.1007/s11128-004-7076-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Mutual convertibility of bound entangled states under local quantum operations and classical communication (LOCC) is studied. We focus on states associated with unextendible product bases (UPB) in a system of three qubits. A complete classification of such UPBs is suggested. We prove that for any pair of UPBs S and T the associated bound entangled states rho(S) and rho(T) cannot be converted to each other by LOCC, unless S and T coincide up to local unitaries. More specifically, there exists a finite precision epsilon(S, T) > 0 such that for any LOCC protocol mapping rho(S) into a probabilistic ensemble (p(alpha) , rho(alpha)), the fidelity between rho(T) and any possible final state rho(alpha) satisfies F(rho(T) , rho(alpha))<= 1 - epsilon(S, T).
引用
收藏
页码:309 / 329
页数:21
相关论文
共 50 条
  • [41] New constructions of unextendible entangled bases with fixed Schmidt number
    Yong, Xinlei
    Song, Yiyang
    Tao, Yuanhong
    QUANTUM INFORMATION PROCESSING, 2019, 18 (11)
  • [42] Mutually Unbiasedness between Maximally Entangled Bases and Unextendible Maximally Entangled Systems in
    Zhang, Jun
    Nan, Hua
    Tao, Yuan-Hong
    Fei, Shao-Ming
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (02) : 886 - 891
  • [43] New constructions of unextendible entangled bases with fixed Schmidt number
    Xinlei Yong
    Yiyang Song
    Yuanhong Tao
    Quantum Information Processing, 2019, 18
  • [44] Multipartite unextendible product bases and quantum security
    Lin Chen
    Yifan Yuan
    Jiahao Yan
    Mengfan Liang
    Quantum Information Processing, 22
  • [45] A note on the construction of unextendible maximally entangled bases in Cd ? Cd'
    Wang, Chenghong
    Wang, Kun
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (10):
  • [46] Multipartite unextendible product bases and quantum security
    Chen, Lin
    Yuan, Yifan
    Yan, Jiahao
    Liang, Mengfan
    QUANTUM INFORMATION PROCESSING, 2023, 22 (06)
  • [47] Unextendible and uncompletable product bases in every bipartition
    Shi, Fei
    Li, Mao-Sheng
    Zhang, Xiande
    Zhao, Qi
    NEW JOURNAL OF PHYSICS, 2022, 24 (11):
  • [48] All entangled states are quantum coherent with locally distinguishable bases
    Mekala, Asmitha
    Sen, Ujjwal
    PHYSICAL REVIEW A, 2021, 104 (05)
  • [49] A NOTE ON LOCALLY UNEXTENDIBLE NON-MAXIMALLY ENTANGLED BASIS
    Chen, Bin
    Nizamidin, Halqem
    Fei, Shao-Ming
    QUANTUM INFORMATION & COMPUTATION, 2013, 13 (11-12) : 1077 - 1080
  • [50] Constructing 2 x 2 x 4 and 4 x 4 unextendible product bases and positive-partial-transpose entangled states
    Wang, Kai
    Chen, Lin
    Shen, Yi
    Sun, Yize
    Zhao, Li-Jun
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (01): : 131 - 146