Unextendible Product Bases and Locally Unconvertible Bound Entangled States

被引:31
|
作者
Bravyi, S. B. [1 ]
机构
[1] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
unextendible product bases; bound entanglement; LOCC;
D O I
10.1007/s11128-004-7076-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Mutual convertibility of bound entangled states under local quantum operations and classical communication (LOCC) is studied. We focus on states associated with unextendible product bases (UPB) in a system of three qubits. A complete classification of such UPBs is suggested. We prove that for any pair of UPBs S and T the associated bound entangled states rho(S) and rho(T) cannot be converted to each other by LOCC, unless S and T coincide up to local unitaries. More specifically, there exists a finite precision epsilon(S, T) > 0 such that for any LOCC protocol mapping rho(S) into a probabilistic ensemble (p(alpha) , rho(alpha)), the fidelity between rho(T) and any possible final state rho(alpha) satisfies F(rho(T) , rho(alpha))<= 1 - epsilon(S, T).
引用
收藏
页码:309 / 329
页数:21
相关论文
共 50 条
  • [31] LOCALLY UNEXTENDIBLE NON-MAXIMALLY ENTANGLED BASIS
    Chakrabarty, Indranil
    Agrawal, Pankaj
    Pati, Auun K.
    QUANTUM INFORMATION & COMPUTATION, 2012, 12 (3-4) : 271 - 282
  • [32] The structure of qubit unextendible product bases
    Johnston, Nathaniel
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (42)
  • [33] Unextendible and strongly uncompletable product bases
    Zhen, Xiao-Fan
    Zuo, Hui-Juan
    Shi, Fei
    Fei, Shao-Ming
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (11)
  • [34] CONSTRUCTING MUTUALLY UNBIASED BASES FROM UNEXTENDIBLE MAXIMALLY ENTANGLED BASES
    Zhao, Hui
    Zhang, Lin
    Fei, Shao-Ming
    Jing, Naihuan
    REPORTS ON MATHEMATICAL PHYSICS, 2020, 85 (01) : 105 - 118
  • [35] The Construction of Mutually Unbiased Unextendible Maximally Entangled Bases
    Tang, Liang
    Xiong, Si-yu
    Li, Wen-jing
    Bai, Ming-qiang
    Mo, Zhi-wen
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (06) : 2054 - 2065
  • [36] Unextendible Maximally Entangled Bases and Mutually Unbiased Bases in Multipartite Systems
    Ya-Jing Zhang
    Hui Zhao
    Naihuan Jing
    Shao-Ming Fei
    International Journal of Theoretical Physics, 2017, 56 : 3425 - 3430
  • [37] Unextendible entangled bases and more nonlocality with less entanglement
    Halder, Saronath
    Sen, Ujjwal
    PHYSICAL REVIEW A, 2022, 105 (03)
  • [38] Constructions of Unextendible Maximally Entangled Bases in Cd ⊗ Cd′
    Zhang, Gui-Jun
    Tao, Yuan-Hong
    Han, Yi-Fan
    Yong, Xin-Lei
    Fei, Shao-Ming
    SCIENTIFIC REPORTS, 2018, 8
  • [39] The Construction of Mutually Unbiased Unextendible Maximally Entangled Bases
    Liang Tang
    Si-yu Xiong
    Wen-jing Li
    Ming-qiang Bai
    Zhi-wen Mo
    International Journal of Theoretical Physics, 2021, 60 : 2054 - 2065
  • [40] A Note on Mutually Unbiased Unextendible Maximally Entangled Bases in
    Nizamidin, Halqem
    Ma, Teng
    Fei, Shao-Ming
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (01) : 326 - 333