QUIVER VARIETIES AND HILBERT SCHEMES

被引:25
|
作者
Kuznetsov, Alexander [1 ,2 ]
机构
[1] VA Steklov Math Inst, Algebra Sect, Moscow 119991, Russia
[2] Independent Univ Moscow, Poncelet Lab, Moscow 119002, Russia
关键词
Quiver variety; Hilbert scheme; McKay correspondence; moduli space;
D O I
10.17323/1609-4514-2007-7-4-673-697
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we give an explicit geometric description of some of the Nakajima's quiver varieties. More precisely, if X = C-2, Gamma subset of SL(C-2) is a finite subgroup, and X-Gamma is a minimal resolution of X/Gamma, we show that X-Gamma[n] (the Gamma-equivariant Hilbert scheme of X), and X-Gamma([n]) (the Hilbert scheme of X-Gamma) are quiver varieties for the affine Dynkin graph corresponding to via the McKay correspondence with the same dimension vectors but different parameters zeta (for earlier results in this direction see works by M. Haiman, M. Varagnolo and E. Vasserot, and W. Wang). In particular, it follows that the varieties X-Gamma[n] and X-Gamma([n]) are diffeomorphic. Computing their cohomology (in the case = Z/dZ) via the fixed points of a (C* x C*)-action we deduce the following combinatorial identity: the number UCY (n, d) of Young diagrams consisting of nd boxes and uniformly colored in d colors equals the number UCY (n, d) of collections of d Young diagrams with the total number of boxes equal to n.
引用
收藏
页码:673 / 697
页数:25
相关论文
共 50 条
  • [21] Quiver Varieties and Branching
    Nakajima, Hiraku
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
  • [22] Some combinatorial identities related to commuting varieties and Hilbert schemes
    Bellamy, Gwyn
    Ginzburg, Victor
    MATHEMATISCHE ANNALEN, 2013, 355 (03) : 801 - 847
  • [23] The virtual Hodge polynomials of nested Hilbert schemes and related varieties
    Jan Cheah
    Mathematische Zeitschrift, 1998, 227 : 479 - 504
  • [24] Desingularizations of quiver Grassmannians via graded quiver varieties
    Keller, Bernhard
    Scherotzke, Sarah
    ADVANCES IN MATHEMATICS, 2014, 256 : 318 - 347
  • [25] On Transitive Action on Quiver Varieties
    Chen, Xiaojun
    Eshmatov, Farkhod
    Eshmatov, Alimjon
    Tikaradze, Akaki
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (10) : 7694 - 7728
  • [26] Symplectic resolutions of quiver varieties
    Bellamy, Gwyn
    Schedler, Travis
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (03):
  • [27] Quiver varieties and Demazure modules
    Savage, A
    MATHEMATISCHE ANNALEN, 2006, 335 (01) : 31 - 46
  • [28] Kirwan surjectivity for quiver varieties
    Kevin McGerty
    Thomas Nevins
    Inventiones mathematicae, 2018, 212 : 161 - 187
  • [29] On the Irreducibility of Some Quiver Varieties
    Bartocci, Claudio
    Bruzzo, Ugo
    Lanza, Valeriano
    Rava, Claudio L. S.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [30] Quiver varieties and Demazure modules
    Alistair Savage
    Mathematische Annalen, 2006, 335 : 31 - 46