Quiver Varieties and Branching

被引:33
|
作者
Nakajima, Hiraku [1 ]
机构
[1] Kyoto Univ, Dept Math, Math Sci Res Inst, Kyoto 6068502, Japan
关键词
quiver variety; geometric Satake correspondence; affine Lie algebra; intersection cohomology; KAC-MOODY ALGEBRAS; ALE SPACES; CRYSTAL BASES; LIE-ALGEBRAS; REPRESENTATIONS; DUALITY; SHEAVES; CONSTRUCTION; INSTANTONS; MODULI;
D O I
10.3842/SIGMA.2009.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Braverman and Finkelberg recently proposed the geometric Satake correspondence for the affine Kac-Moody group Gaff [Braverman A., Finkelberg M., arXiv:0711.2083]. They conjecture that intersection cohomology sheaves on the Uhlenbeck compactification of the framed moduli space of G(cpt)-instantons on R(4)/Z(r) correspond to weight spaces of representations of the Langlands dual group G(aff)(V) at level r. When G = SL(l), the Uhlenbeck compactification is the quiver variety of type sl(r)(aff), and their conjecture follows from the author's earlier result and I. Frenkel's level-rank duality. They further introduce a convolution diagram which conjecturally gives the tensor product multiplicity [Braverman A., Finkelberg M., Private communication, 2008]. In this paper, we develop the theory for the branching in quiver varieties and check this conjecture for G = SL(l).
引用
收藏
页数:37
相关论文
共 50 条
  • [1] On quiver varieties
    Lusztig, G
    ADVANCES IN MATHEMATICS, 1998, 136 (01) : 141 - 182
  • [2] Translation quiver varieties
    Mozgovoy, Sergey
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (01)
  • [3] Smoothing of quiver varieties
    Klaus Altmann
    Duco van Straten
    manuscripta mathematica, 2009, 129 : 211 - 230
  • [4] QUIVER GRASSMANNIANS, QUIVER VARIETIES AND THE PREPROJECTIVE ALGEBRA
    Savage, Alistair
    Tingley, Peter
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 251 (02) : 393 - 429
  • [5] Quiver varieties of type A
    Maffei, A
    COMMENTARII MATHEMATICI HELVETICI, 2005, 80 (01) : 1 - 27
  • [6] Quiver Varieties and Yangians
    Michela Varagnolo
    Letters in Mathematical Physics, 2000, 53 : 273 - 283
  • [7] Smoothing of quiver varieties
    Altmann, Klaus
    van Straten, Duco
    MANUSCRIPTA MATHEMATICA, 2009, 129 (02) : 211 - 230
  • [8] Remarks on quiver varieties
    Lusztig, G
    DUKE MATHEMATICAL JOURNAL, 2000, 105 (02) : 239 - 265
  • [9] Quiver varieties and Yangians
    Varagnolo, M
    LETTERS IN MATHEMATICAL PHYSICS, 2000, 53 (04) : 273 - 283
  • [10] Desingularizations of quiver Grassmannians via graded quiver varieties
    Keller, Bernhard
    Scherotzke, Sarah
    ADVANCES IN MATHEMATICS, 2014, 256 : 318 - 347