On fractional Schrodinger equation in α-dimensional fractional space

被引:48
|
作者
Eid, Rajeh [2 ]
Muslih, Sami I. [3 ]
Baleanu, Dumitru [1 ]
Rabei, E. [4 ,5 ]
机构
[1] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[2] Atilim Univ, Dept Math, TR-06836 Incek Ankara, Turkey
[3] Al Azhar Univ, Dept Phys, Gaza, Israel
[4] Jerash Private Univ, Dept Sci, Jerash, Jordan
[5] Mutah Univ, Dept Phys, Al Karak, Jordan
关键词
Fractional space; Schrodinger equation; Fractional dimension; Radial equation;
D O I
10.1016/j.nonrwa.2008.01.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Schrodinger equation is solved in a-dimensional fractional space with a Coulomb potential proportional to 1/r(beta-2), 2 <= beta <= 4. The wave functions are studied in terms of spatial dimensionality alpha and beta and the results for beta = 3 are compared with those obtained in the literature. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1299 / 1304
页数:6
相关论文
共 50 条
  • [21] Numerical solutions of two-dimensional fractional Schrodinger equation
    A. K. Mittal
    L. K. Balyan
    Mathematical Sciences, 2020, 14 : 129 - 136
  • [22] Finite dimensional global attractor for a fractional nonlinear Schrodinger equation
    Goubet, Olivier
    Zahrouni, Ezzeddine
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (05):
  • [23] Numerical solutions of two-dimensional fractional Schrodinger equation
    Mittal, A. K.
    Balyan, L. K.
    MATHEMATICAL SCIENCES, 2020, 14 (02) : 129 - 136
  • [24] The two-dimensional fractional discrete nonlinear Schrodinger equation
    Molina, Mario, I
    PHYSICS LETTERS A, 2020, 384 (33)
  • [25] Using a Reliable Method for Higher Dimensional of the Fractional Schrodinger Equation
    Taghizadeh, Nasir
    Foumani, Mona Najand
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2016, 48 (01): : 11 - 18
  • [26] Fractional Schrodinger equation; solvability and connection with classical Schrodinger equation
    Bezerra, Flank D. M.
    Carvalho, Alexandre N.
    Dlotko, Tomasz
    Nascimento, Marcelo J. D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (01) : 336 - 360
  • [27] Fractional-time Schrodinger equation: Fractional dynamics on a comb
    Iomin, Alexander
    CHAOS SOLITONS & FRACTALS, 2011, 44 (4-5) : 348 - 352
  • [28] Time fractional Schrodinger equation with a limit based fractional derivative
    Zu, Chuanjin
    Yu, Xiangyang
    CHAOS SOLITONS & FRACTALS, 2022, 157
  • [29] A study of fractional Schrodinger equation composed of Jumarie fractional derivative
    Banerjee, Joydip
    Ghosh, Uttam
    Sarkar, Susmita
    Das, Shantanu
    PRAMANA-JOURNAL OF PHYSICS, 2017, 88 (04):
  • [30] Reply to "Comment on 'Fractional quantum mechanics' and 'Fractional Schrodinger equation' "
    Laskin, Nick
    PHYSICAL REVIEW E, 2016, 93 (06)